This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A250260 The number of 5-alternating permutations of [n]. 3
 1, 1, 1, 2, 3, 4, 5, 29, 133, 412, 1041, 2300, 22991, 170832, 822198, 3114489, 10006375, 141705439, 1457872978, 9522474417, 48094772656, 202808749375, 3716808948931, 48860589990687, 403131250565618, 2545098156762649, 13287626090593750 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS A sequence a(1), a(2),... is called k-alternating if a(i) > a(i+1) iff i=1 (mod k). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..500 R. P. Stanley, A survey of alternating permutations, arXiv:0912.4240, page 17. MAPLE # dowupP defined in A250259. A250260 :=proc(n)     downupP(n, 4) ; end proc: seq(A250260(n), n=0..20) ; # second Maple program: b:= proc(u, o, t) option remember; `if`(u+o=0, 1,      `if`(t=1, add(b(u-j, o+j-1, irem(t+1, 5)), j=1..u),                add(b(u+j-1, o-j, irem(t+1, 5)), j=1..o)))     end: a:= n-> b(0, n, 0): seq(a(n), n=0..35);  # Alois P. Heinz, Nov 15 2014 MATHEMATICA b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, If[t == 1, Sum[b[u-j, o+j-1, Mod[t+1, 5]], {j, 1, u}], Sum[b[u+j-1, o-j, Mod[t+1, 5]], {j, 1, o}]]]; a[n_] := b[0, n, 0]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 24 2015, after Alois P. Heinz *) CROSSREFS Cf. A065619 (2-alternating), A249402 (3-alternating), A250259 (4-alternating). Column k=5 of A250261. Sequence in context: A037399 A220891 A220890 * A086130 A024636 A004845 Adjacent sequences:  A250257 A250258 A250259 * A250261 A250262 A250263 KEYWORD nonn AUTHOR R. J. Mathar, Nov 15 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 23 14:11 EDT 2019. Contains 325254 sequences. (Running on oeis4.)