login
Number of length 7+1 0..n arrays with the sum of adjacent differences multiplied by some arrangement of +-1 equal to zero
1

%I #4 Nov 13 2014 21:43:08

%S 128,3517,32032,195927,810964,2810751,7989940,20567199,46931176,

%T 100480363,198506588,375153177,669200436,1155420975,1910171088,

%U 3080038929,4801129076,7337318733,10913397192,15974820909,22870564032

%N Number of length 7+1 0..n arrays with the sum of adjacent differences multiplied by some arrangement of +-1 equal to zero

%C Row 7 of A250167

%H R. H. Hardin, <a href="/A250172/b250172.txt">Table of n, a(n) for n = 1..24</a>

%e Some solutions for n=4

%e ..0....1....1....1....1....2....2....2....1....0....0....1....1....2....0....1

%e ..1....0....1....1....2....2....2....0....4....1....0....0....1....1....1....3

%e ..2....1....1....1....3....1....3....1....0....2....4....4....0....2....2....3

%e ..3....1....4....1....2....3....1....2....1....4....3....3....4....1....2....1

%e ..1....0....4....2....3....4....0....1....2....4....0....0....3....3....1....1

%e ..2....4....2....1....0....4....0....4....2....2....3....3....0....1....3....3

%e ..0....1....0....3....2....0....4....1....2....1....3....1....4....1....4....2

%e ..0....1....3....1....1....0....0....0....1....2....2....3....1....0....4....3

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 13 2014