The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A250109 Sequence arising from study of multiplicative complexity of symmetric functions over a field with characteristic p. 1
 -8, 0, -20, -20, -64, -48, -120, -120, -232, -208, -364, -364, -576, -544, -816, -816, -1160, -1120, -1540, -1540, -2048, -2000, -2600, -2600, -3304, -3248, -4060, -4060, -4992, -4928, -5984, -5984, -7176, -7104, -8436, -8436, -9920, -9840, -11480, -11480 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS No recurrence is known. LINKS Lars Blomberg, Table of n, a(n) for n = 1..5000 Maran van Heesch, The multiplicative complexity of symmetric functions over a field with characteristic p, Thesis, 2014. See Table 3. FORMULA From Lars Blomberg, Dec 04 2016: (Start) Empirically for 5000 terms: Let k = n mod 4. Formula: k = 0: a(n) = -n*(n+1)*(n+2)/6. k = 1: a(n) = -(n+3)*(n^2 + 3*n + 8)/6. k = 2: a(n) = -(n-2)*(n+2)*(n+3)/6. k = 3: a(n) = -(n+1)*(n+2)*(n+3)/6. Recursion: a(1..12) = (-8, 0, -20, -20, -64, -48, -120, -120, -232, -208, -364, -364). a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12) - 64, n > 12. (End) Empirical g.f.: -4*x*(2 -2*x +3*x^2 +2*x^3 +2*x^4 +x^6) / ((1 -x)^4*(1 +x)^3*(1 +x^2)^2). - Colin Barker, Dec 04 2016 CROSSREFS Sequence in context: A265115 A214205 A278147 * A022900 A028652 A028636 Adjacent sequences:  A250106 A250107 A250108 * A250110 A250111 A250112 KEYWORD sign AUTHOR N. J. A. Sloane, Nov 19 2014 EXTENSIONS More terms from Lars Blomberg, Dec 04 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 03:43 EDT 2022. Contains 356110 sequences. (Running on oeis4.)