%I #5 Nov 11 2014 12:30:04
%S 49,83,144,252,442,774,1348,2361,4156,7334,12956,22892,40444,71468,
%T 126350,223466,395309,699356,1237295,2189067,3873133,6853086,12126176,
%U 21457004,37968019,67184477,118883613,210366841,372249789,658707896
%N Number of length n+5 0..1 arrays with every six consecutive terms having the maximum of some two terms equal to the minimum of the remaining four terms
%C Column 1 of A250081
%H R. H. Hardin, <a href="/A250074/b250074.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 2*a(n-1) -a(n-3) +a(n-5) +3*a(n-6) -4*a(n-7) -4*a(n-8) +2*a(n-9) +a(n-10) -a(n-11) -6*a(n-12) +2*a(n-13) +7*a(n-14) -2*a(n-15) +4*a(n-18) -4*a(n-20) +a(n-21) -a(n-24) +a(n-26)
%e Some solutions for n=6
%e ..0....0....0....1....1....1....0....0....0....1....1....0....1....0....0....1
%e ..0....1....0....1....0....0....0....0....0....0....1....1....1....1....0....0
%e ..1....1....0....0....0....0....0....0....0....0....1....1....1....0....1....0
%e ..0....1....0....1....1....0....1....0....0....0....1....0....0....0....1....0
%e ..1....0....1....0....1....0....1....1....0....0....1....0....0....0....0....0
%e ..0....0....0....0....0....1....1....0....0....0....1....1....0....0....0....0
%e ..0....0....0....0....0....1....0....1....0....0....1....0....0....1....1....0
%e ..1....1....1....1....0....1....0....0....1....1....1....1....1....1....0....0
%e ..0....1....0....1....1....0....0....0....1....0....1....0....1....0....1....1
%e ..1....0....1....1....1....0....0....1....0....1....0....0....0....1....0....0
%e ..0....0....1....0....0....0....0....0....0....1....1....0....0....0....0....1
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 11 2014