login
A250061
Number of length 2+6 0..n arrays with no seven consecutive terms having the maximum of any two terms equal to the minimum of the remaining five terms.
1
21, 1299, 18966, 142170, 715155, 2753061, 8746524, 24049476, 59084865, 132643335, 276590226, 542336574, 1009470111, 1796982585, 3077570040, 5095523016, 8188763949, 12815629371, 19587034830, 29304700770, 43006157931, 62017291149
OFFSET
1,1
COMMENTS
Row 2 of A250059.
LINKS
FORMULA
Empirical: a(n) = n^8 + (18/7)*n^7 + 6*n^6 + 9*n^5 + 3*n^4 - n^3 + (1/2)*n^2 - (1/14)*n.
Conjectures from Colin Barker, Aug 22 2017: (Start)
G.f.: 3*x*(7 + 370*x + 2677*x^2 + 5492*x^3 + 3977*x^4 + 890*x^5 + 27*x^6) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)
EXAMPLE
Some solutions for n=4:
..1....2....1....1....1....3....3....1....4....4....0....4....0....4....4....2
..2....2....4....3....3....0....2....3....0....2....3....2....0....0....2....1
..2....0....2....3....1....4....1....2....1....0....4....0....4....2....0....4
..2....1....0....1....2....3....0....1....3....3....2....1....4....3....4....0
..0....3....3....3....0....3....3....3....3....2....3....3....4....4....1....2
..0....1....2....4....3....4....3....3....0....1....3....4....3....0....2....4
..2....0....0....4....0....0....3....4....1....0....4....0....1....2....4....2
..1....1....2....1....4....1....0....0....4....4....1....1....2....3....4....3
CROSSREFS
Sequence in context: A036059 A036519 A219408 * A267949 A268096 A281432
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 11 2014
STATUS
approved