OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Anthony G. Shannon, Hakan Akkuş, Yeşim Aküzüm, Ömür Deveci, and Engin Özkan, A partial recurrence Fibonacci link, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 530-537. See Table 2, p. 534.
Index entries for linear recurrences with constant coefficients, signature (7,-17,17,-6).
FORMULA
G.f.: 1/((1-x)^2 * (1-2*x) * (1-3*x)).
a(n) = 9/4 - 2^(n+3) + n/2 + 3^(n+3)/4. - R. J. Mathar, Jan 09 2015
E.g.f.: (1/4)*((9 + 2*x) - 32*exp(x) + 27*exp(2*x))*exp(x). - G. C. Greubel, Jul 21 2022
MATHEMATICA
LinearRecurrence[{7, -17, 17, -6}, {1, 7, 32, 122}, 50] (* G. C. Greubel, Jul 21 2022 *)
PROG
(Magma) [(2*n +9 -2^(n+5) +3^(n+3))/4: n in [0..50]]; // G. C. Greubel, Jul 21 2022
(SageMath) [(2*n+9 -2^(n+5) +3^(n+3))/4 for n in (0..50)] # G. C. Greubel, Jul 21 2022
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Alex Ratushnyak, Dec 28 2014
STATUS
approved