login
A249935
G.f. satisfies: A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} x^k * {[x^k] A(x)^(2*n)}.
4
1, 1, 3, 5, 25, 42, 203, 352, 1863, 3221, 17028, 29700, 160011, 279869, 1515002, 2660203, 14496687, 25519004, 139589213, 246299404, 1351864004, 2389786433, 13150095286, 23284570446, 128400299029, 227675571607, 1257685572691, 2232848363136, 12352579717154, 21954187917378
OFFSET
0,3
COMMENTS
Here [x^k] A(x)^(2*n) denotes the coefficient of x^k in A(x)^(2*n).
LINKS
FORMULA
G.f. satisfies: A(x) = (1 + 2*x^2*G'(x^2)/G(x^2)) / (1 - x*G(x^2)^2), where A(x) = G(x/A(x)^2) and G(x) = A(x*G(x)^2) = sqrt( (1/x)*Series_Reversion(x/A(x)^2) ).
a(n) ~ c * d^n / sqrt(n), where d = 3.18978759025890966... , c = 0.5263107214182... if n is even and c = 0.2984906301198... if n is odd. - Vaclav Kotesovec, Nov 29 2014
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 5*x^3 + 25*x^4 + 42*x^5 + 203*x^6 + 352*x^7 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 16*x^3 + 69*x^4 + 164*x^5 + 665*x^6 +...
A(x)^4 = 1 + 4*x + 18*x^2 + 60*x^3 + 251*x^4 + 828*x^5 + 3208*x^6 +...
A(x)^6 = 1 + 6*x + 33*x^2 + 140*x^3 + 630*x^4 + 2478*x^5 + 10144*x^6 +...
A(x)^8 = 1 + 8*x + 52*x^2 + 264*x^3 + 1306*x^4 + 5824*x^5 + 25676*x^6 +...
GENERATING METHOD.
The initial terms, k=0..n, of the (2*n)-th power of g.f. A(x) begin:
n=0: [1];
n=2: [1, 2];
n=4: [1, 4, 18];
n=6: [1, 6, 33, 140];
n=8: [1, 8, 52, 264, 1306];
n=10:[1, 10, 75, 440, 2395, 11832];
n=12:[1, 12, 102, 676, 4029, 21756, 111204];
n=14:[1, 14, 133, 980, 6356, 37170, 203406, 1049764];
n=16:[1, 16, 168, 1360, 9540, 60000, 350056, 1918816, 10031418];
n=18:[1, 18, 207, 1824, 13761, 92556, 573477, 3325212, 18304947, 96438254]; ...
from which the antidiagonal sums form this sequence:
a(0) = 1;
a(1) = 1;
a(2) = 1 + 2 = 3;
a(3) = 1 + 4 = 5;
a(4) = 1 + 6 + 18 = 25;
a(5) = 1 + 8 + 33 = 42;
a(6) = 1 + 10 + 52 + 140 = 203;
a(7) = 1 + 12 + 75 + 264 = 352; ...
ALTERNATE GENERATING METHOD.
Define G(x) such that G(x) = A(x*G(x)^2) = sqrt( (1/x)*Series_Reversion(x/A(x)^2) ):
G(x) = 1 + x + 5*x^2 + 28*x^3 + 199*x^4 + 1474*x^5 + 11668*x^6 + 95316*x^7 + 802213*x^8 + 6892525*x^9 + 60259964*x^10 +...
then A(x) = (1 + 2*x^2 * G'(x^2)/G(x^2)) / (1 - x*G(x^2)^2).
Note that 1 + 2*x^2 * G'(x^2)/G(x^2) begins:
1 + 2*x^2 + 18*x^4 + 140*x^6 + 1306*x^8 + 11832*x^10 + 111204*x^12 +...
where the coefficients form the main diagonal of the above triangle.
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*sum(k=0, m, x^k*polcoeff((A+x*O(x^m))^(2*m), k))+x*O(x^n))); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
(PARI) /* ALTERNATE GENERATING METHOD (faster) */
{a(n)=local(A=1+x, G=1); for(i=0, #binary(n)+1, G=sqrt(1/x*serreverse(x/A^2 +x^2*O(x^n))); A=(1+2*x^2*subst(G'/G, x, x^2))/(1-x*subst(G^2, x, x^2))); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 24 2014
STATUS
approved