login
A249914
Number of partitions of 4n with equal sums of odd and even parts.
4
1, 1, 4, 12, 30, 70, 165, 330, 704, 1380, 2688, 4984, 9394, 16665, 29970, 52096, 90090, 152064, 257180, 423360, 697851, 1129392, 1819632, 2891520, 4583250, 7162364, 11161752, 17211180, 26427544, 40208520, 60971520, 91641748, 137290956, 204198876, 302530560
OFFSET
0,3
LINKS
FORMULA
a(n) = A000041(n) * A035294(n) = A000041(n) * A000009(2n).
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (16*6^(3/4)*n^(7/4)). - Vaclav Kotesovec, Dec 11 2020
EXAMPLE
a(0) = 1: [], the empty partition.
a(1) = 1: [2,1,1].
a(2) = 4: [4,3,1], [4,1,1,1,1], [3,2,2,1], [2,2,1,1,1,1].
a(3) = 12: [6,5,1], [6,3,3], [6,3,1,1,1], [6,1,1,1,1,1,1], [5,4,2,1], [5,2,2,2,1], [4,3,3,2], [4,3,2,1,1,1], [4,2,1,1,1,1,1,1], [3,3,2,2,2], [3,2,2,2,1,1,1], [2,2,2,1,1,1,1,1,1].
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i))))
end:
a:= n-> combinat[numbpart](n) *b(2*n, 2*n-1):
seq(a(n), n=0..50);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-2]+If[i>n, 0, b[n-i, i]]]];
a[n_] := PartitionsP[n] b[2n, 2n-1];
a /@ Range[0, 50] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 11 2015
STATUS
approved