|
|
A249910
|
|
Digital root of A003500(n).
|
|
0
|
|
|
2, 4, 5, 7, 5, 4, 2, 4, 5, 7, 5, 4, 2, 4, 5, 7, 5, 4, 2, 4, 5, 7, 5, 4, 2, 4, 5, 7, 5, 4, 2, 4, 5, 7, 5, 4, 2, 4, 5, 7, 5, 4, 2, 4, 5, 7, 5, 4, 2, 4, 5, 7, 5, 4, 2, 4, 5, 7, 5, 4, 2, 4, 5, 7, 5, 4, 2, 4, 5, 7, 5, 4, 2, 4, 5, 7, 5, 4, 2, 4, 5, 7, 5, 4, 2, 4, 5, 7, 5, 4, 2, 4, 5, 7, 5, 4, 2, 4, 5, 7, 5, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Periodic with cycle of length 6: {2,4,5,7,5,4}. a(n) may be expressed as the decimal expansion of 246/1001. Sequence is palindromic.
|
|
LINKS
|
Table of n, a(n) for n=0..101.
Index entries for linear recurrences with constant coefficients, signature (1, 0, -1, 1).
|
|
FORMULA
|
a(n) = 4*a(n-1) - a(n-2), reduced to digital root.
a(n) = digital root of (2 + sqrt(3))^n + ( 2 - sqrt(3))^n.
|
|
MATHEMATICA
|
LinearRecurrence[{1, 0, -1, 1}, {2, 4, 5, 7}, 102] (* Ray Chandler, Jul 25 2016*)
|
|
CROSSREFS
|
Cf. A010888, A003500.
Sequence in context: A257433 A005532 A026202 * A025511 A224367 A308219
Adjacent sequences: A249907 A249908 A249909 * A249911 A249912 A249913
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Peter M. Chema, Dec 17 2014
|
|
EXTENSIONS
|
More terms from Ray Chandler, Jul 25 2016
|
|
STATUS
|
approved
|
|
|
|