login
A249844
T(n,k)=Number of length n+4 0..k arrays with no five consecutive terms having the maximum of any two terms equal to the minimum of the remaining three terms
14
10, 110, 10, 560, 198, 10, 1920, 1500, 359, 10, 5170, 6916, 4064, 653, 10, 11830, 23526, 25206, 11052, 1189, 10, 24080, 65226, 108250, 92190, 30080, 2163, 10, 44880, 156184, 363349, 499654, 337396, 81816, 3966, 10, 78090, 335016, 1022672, 2029683, 2307418
OFFSET
1,1
COMMENTS
Table starts
.10...110.....560......1920.......5170.......11830........24080.........44880
.10...198....1500......6916......23526.......65226.......156184........335016
.10...359....4064.....25206.....108250......363349......1022672.......2522796
.10...653...11052.....92190.....499654.....2029683......6712760......19039308
.10..1189...30080....337396....2307418....11342301.....44075760.....143723664
.10..2163...81816...1234328...10653298....63374127....289372688....1084868616
.10..3966..223505...4527441...49270055...354521087...1901506446....8194431990
.10..7269..610707..16609691..227902341..1983461964..12496226122...61900389630
.10.13311.1668211..60928967.1054123407.11096650996..82120356870..467585930650
.10.24352.4554827.223459265.4875176581.62077669371.539644444522.3531991262078
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: [linear recurrence of order 40]
k=3: [order 70]
Empirical for row n:
n=1: a(n) = n^5 + (5/2)*n^4 + (10/3)*n^3 + (5/2)*n^2 + (2/3)*n
n=2: a(n) = n^6 + (9/5)*n^5 + 3*n^4 + 3*n^3 + n^2 + (1/5)*n
n=3: a(n) = n^7 + (6/5)*n^6 + 3*n^5 + 3*n^4 + (5/6)*n^3 + (4/5)*n^2 + (1/6)*n
n=4: [polynomial of degree 8]
n=5: [polynomial of degree 9]
n=6: [polynomial of degree 10]
n=7: [polynomial of degree 11]
EXAMPLE
Some solutions for n=4 k=4
..0....3....3....2....4....4....3....2....3....4....4....2....1....0....0....3
..3....3....1....0....4....3....2....3....4....2....1....1....2....2....0....1
..4....1....2....2....2....2....4....4....4....1....4....4....2....0....1....1
..1....2....0....1....4....4....3....4....1....4....2....3....3....4....3....0
..2....3....0....0....1....4....0....2....4....3....1....4....0....1....2....0
..3....3....1....2....4....4....1....0....1....4....4....0....0....3....0....3
..3....4....1....2....0....2....0....4....2....1....0....4....3....3....4....4
..1....1....2....0....3....2....1....1....2....0....0....2....3....0....1....1
CROSSREFS
Sequence in context: A281044 A281519 A281633 * A105030 A280528 A281278
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 07 2014
STATUS
approved