OFFSET
1,1
COMMENTS
Table starts
.10...110.....560......1920.......5170.......11830........24080.........44880
.10...198....1500......6916......23526.......65226.......156184........335016
.10...359....4064.....25206.....108250......363349......1022672.......2522796
.10...653...11052.....92190.....499654.....2029683......6712760......19039308
.10..1189...30080....337396....2307418....11342301.....44075760.....143723664
.10..2163...81816...1234328...10653298....63374127....289372688....1084868616
.10..3966..223505...4527441...49270055...354521087...1901506446....8194431990
.10..7269..610707..16609691..227902341..1983461964..12496226122...61900389630
.10.13311.1668211..60928967.1054123407.11096650996..82120356870..467585930650
.10.24352.4554827.223459265.4875176581.62077669371.539644444522.3531991262078
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..1549
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: [linear recurrence of order 40]
k=3: [order 70]
Empirical for row n:
n=1: a(n) = n^5 + (5/2)*n^4 + (10/3)*n^3 + (5/2)*n^2 + (2/3)*n
n=2: a(n) = n^6 + (9/5)*n^5 + 3*n^4 + 3*n^3 + n^2 + (1/5)*n
n=3: a(n) = n^7 + (6/5)*n^6 + 3*n^5 + 3*n^4 + (5/6)*n^3 + (4/5)*n^2 + (1/6)*n
n=4: [polynomial of degree 8]
n=5: [polynomial of degree 9]
n=6: [polynomial of degree 10]
n=7: [polynomial of degree 11]
EXAMPLE
Some solutions for n=4 k=4
..0....3....3....2....4....4....3....2....3....4....4....2....1....0....0....3
..3....3....1....0....4....3....2....3....4....2....1....1....2....2....0....1
..4....1....2....2....2....2....4....4....4....1....4....4....2....0....1....1
..1....2....0....1....4....4....3....4....1....4....2....3....3....4....3....0
..2....3....0....0....1....4....0....2....4....3....1....4....0....1....2....0
..3....3....1....2....4....4....1....0....1....4....4....0....0....3....0....3
..3....4....1....2....0....2....0....4....2....1....0....4....3....3....4....4
..1....1....2....0....3....2....1....1....2....0....0....2....3....0....1....1
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 07 2014
STATUS
approved