login
A249838
Number of length n+4 0..2 arrays with no five consecutive terms having the maximum of any two terms equal to the minimum of the remaining three terms
1
110, 198, 359, 653, 1189, 2163, 3966, 7269, 13311, 24352, 44517, 81574, 149520, 273940, 501561, 917891, 1681374, 3080886, 5644708, 10338163, 18928518, 34669501, 63514462, 116360434, 213136470, 390328905, 714923094, 1309610123, 2399073887
OFFSET
1,1
COMMENTS
Column 2 of A249844
LINKS
FORMULA
Empirical: a(n) = 22*a(n-5) +10*a(n-6) +4*a(n-7) +10*a(n-8) +15*a(n-9) -147*a(n-10) -121*a(n-11) -39*a(n-12) -95*a(n-13) -174*a(n-14) +303*a(n-15) +407*a(n-16) +75*a(n-17) +108*a(n-18) +472*a(n-19) +15*a(n-20) -410*a(n-21) -33*a(n-22) +294*a(n-23) -194*a(n-24) -358*a(n-25) +30*a(n-26) +195*a(n-27) -191*a(n-28) -67*a(n-29) +100*a(n-30) +125*a(n-31) -114*a(n-32) -a(n-33) +19*a(n-34) +18*a(n-35) -36*a(n-36) +16*a(n-37) +12*a(n-38) +4*a(n-39) -8*a(n-40)
EXAMPLE
Some solutions for n=6
..0....1....1....1....2....2....2....0....2....1....2....1....0....2....0....0
..0....0....2....2....0....2....0....1....0....2....2....2....2....0....2....0
..2....2....1....0....2....2....0....2....2....2....2....0....0....0....0....1
..1....2....2....0....2....0....2....2....0....1....0....2....2....2....1....1
..2....2....2....2....0....1....1....0....2....2....1....2....1....2....2....2
..0....0....0....2....1....2....2....2....2....0....2....1....0....1....0....0
..0....1....0....2....2....2....2....0....1....2....0....2....2....2....2....0
..1....0....2....0....2....0....0....1....2....2....1....0....2....0....2....2
..1....1....2....0....0....2....2....2....0....1....0....0....2....2....1....2
..2....1....1....2....0....1....1....2....0....2....2....1....0....0....2....1
CROSSREFS
Sequence in context: A200070 A324210 A146081 * A103652 A032614 A120727
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 07 2014
STATUS
approved