%I #23 Dec 18 2014 02:03:46
%S 1,2,1,3,2,1,4,3,2,1,5,5,3,2,1,6,4,9,3,2,1,7,8,4,14,3,2,1,8,6,12,4,28,
%T 3,2,1,9,14,5,21,4,36,3,2,1,10,13,42,5,33,4,57,3,2,1,11,11,17,92,5,45,
%U 4,67,3,2,1,12,7,19,33,305,5,63,4,93,3,2,1,13,23,6,25,39,455,5,80,4,139,3,2,1,14,9,59,6,43,61,944,5,116,4,154,3,2,1,15,17,7,144,6,52,70,1238,5,148,4,210,3,2,1
%N Square array of permutations: A(row,col) = A078898(A246278(row,col)), read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...
%e The top left corner of the array:
%e 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...
%e 1, 2, 3, 5, 4, 8, 6, 14, 13, 11, 7, 23, 9, 17, 18, ...
%e 1, 2, 3, 9, 4, 12, 5, 42, 17, 19, 6, 59, 7, 22, 26, ...
%e 1, 2, 3, 14, 4, 21, 5, 92, 33, 25, 6, 144, 7, 32, 39, ...
%e 1, 2, 3, 28, 4, 33, 5, 305, 39, 43, 6, 360, 7, 48, 50, ...
%e 1, 2, 3, 36, 4, 45, 5, 455, 61, 52, 6, 597, 7, 63, 68, ...
%e 1, 2, 3, 57, 4, 63, 5, 944, 70, 76, 6, 1053, 7, 95, 84, ...
%e 1, 2, 3, 67, 4, 80, 5, 1238, 96, 99, 6, 1502, 7, 106, 121, ...
%e ...
%o (Scheme)
%o (define (A249822 n) (A249822bi (A002260 n) (A004736 n)))
%o (define (A249822bi row col) (A078898 (A246278bi row col))) ;; Code for A246278bi given in A246278.
%Y Inverse permutations can be found from table A249821.
%Y Row k+1 is a right-to-left composition of the first k rows of A251722.
%Y Row 1: A000027 (an identity permutation), Row 2: A048673, Row 3: A249824, Row 4: A249826.
%Y Column 4: A250474, Column 6: A250477, Column 8: A250478.
%Y Cf. A002260, A004736, A078898, A246278, A249818.
%K nonn,tabl
%O 1,2
%A _Antti Karttunen_, Nov 06 2014