This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A249780 Product of lowest and highest prime factors of 2^n-1 2
 9, 49, 15, 961, 21, 16129, 51, 511, 93, 2047, 39, 67092481, 381, 1057, 771, 17179607041, 219, 274876858369, 123, 2359, 2049, 8388607, 723, 55831, 24573, 1838599, 381, 486737, 993, 4611686014132420609, 196611, 4196353, 393213, 3810551, 327, 137438953471, 1572861, 849583, 185043 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 LINKS Chai Wah Wu, Table of n, a(n) for n = 2..200 FORMULA a(n) = A005420(n) * A049479(n) EXAMPLE The lowest and higest prime factors of 2^6-1 are 3 and 7, so A(6) = 21 MAPLE a:= proc(n) local F; F:= numtheory:-factorset(2^n-1); min(F)*max(F) end proc: seq(a(n), n=2..50); # Robert Israel, Nov 05 2014 PROG (PARI) for(n=2, 50, p=2^n-1; print1(factor(p)[1, 1]*factor(p)[#factor(p)[, 1], 1], ", ")) \\ Derek Orr, Nov 05 2014 (Python) from sympy import primefactors A249780_list, x = [], 1 for n in range(2, 10): ....x = 2*x + 1 ....p = primefactors(x) ....A249780_list.append(max(p)*min(p)) # Chai Wah Wu, Nov 05 2014 CROSSREFS Sequence in context: A179280 A293095 A283092 * A140891 A072461 A181607 Adjacent sequences:  A249777 A249778 A249779 * A249781 A249782 A249783 KEYWORD nonn AUTHOR Jacob Vecht, Nov 05 2014 EXTENSIONS More terms from Derek Orr, Nov 05 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 08:37 EDT 2019. Contains 322209 sequences. (Running on oeis4.)