login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A249779 Row "sums" of Pascal triangle (A007318), using operation <+> defined in comment in A245618. 1
1, 2, 2, 2, 2, 22, 20, 28, 2, 494, 912, 1672, 2376, 4836, 4160, 4184, 2, 131038, 261800, 522272, 1035804, 2053288, 3977272, 7742352, 13942968, 28016020, 47111040, 84948528, 92072064, 272727022, 249686810, 167376688, 2, 8589934526, 17179867992, 34359725136 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Operation <+> is defined in A245618 as: k<+>m = |k+(-1)^(k+m)*m|.

a(n)=2 for n=1,2,3,4,8,16,32,64,128,256,...

LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..1000

EXAMPLE

For n=4, we have row 1,4,6,4,1.

By definition of <+>, we find 1<+>4=3, 3<+>6=3, 3<+>4=1, 1<+>1=2. So a(4)=2.

MATHEMATICA

a249779[n_Integer] := Module[{m0082, pls, lst},

  m0082[j_] := Table[Binomial[j, k], {k, 0, j}];

  pls[k_, m_] := Abs[k + (-1)^(k + m)*m];

  lst = m0082[n];

  For[i = 0, i < n, i++, lst[[2]] = pls[lst[[1]], lst[[2]]];

   lst = Drop[lst, 1]];

  lst[[1]]

]; a249779 /@ Range[35] (* Michael De Vlieger, Nov 23 2014 *)

parityAdd[a_, b_]:=Abs[a+b (-1)^(a+b)];

Map[Fold[parityAdd, First[#], Rest[#]]&[Binomial[#, Range[0, #]]]&, Range[0, 35]] (* Peter J. C. Moses, Dec 01 2014 *)

CROSSREFS

Cf. A007318, A245618, A245619, A249388.

Sequence in context: A100687 A067096 A259704 * A167394 A029627 A075182

Adjacent sequences:  A249776 A249777 A249778 * A249780 A249781 A249782

KEYWORD

nonn

AUTHOR

Vladimir Shevelev, Nov 05 2014

EXTENSIONS

More terms from Peter J. C. Moses, Nov 05 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 12:38 EDT 2019. Contains 323514 sequences. (Running on oeis4.)