%I #4 Nov 03 2014 09:58:08
%S 2,53,164,485,1218,2589,4944,8605,13814,21789,32332,46097,63726,85773,
%T 114604,149773,191878,241869,300548,371753,454178,548821,656856,
%U 779409,922630,1083277,1262944,1462789,1684282,1935745,2212864,2516841,2849582
%N Number of length 2+4 0..n arrays with every five consecutive terms having four times some element equal to the sum of the remaining four
%C Row 2 of A249656
%H R. H. Hardin, <a href="/A249658/b249658.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = -a(n-3) -a(n-4) +a(n-5) -a(n-6) +a(n-10) +2*a(n-11) -a(n-12) +2*a(n-13) +3*a(n-14) +a(n-15) +a(n-16) +2*a(n-17) +a(n-18) +2*a(n-19) -2*a(n-21) +a(n-22) -3*a(n-24) -3*a(n-25) -2*a(n-26) -3*a(n-27) -2*a(n-28) -5*a(n-29) -3*a(n-30) -a(n-31) -a(n-32) -3*a(n-33) +3*a(n-36) +a(n-37) +a(n-38) +3*a(n-39) +5*a(n-40) +2*a(n-41) +3*a(n-42) +2*a(n-43) +3*a(n-44) +3*a(n-45) -a(n-47) +2*a(n-48) -2*a(n-50) -a(n-51) -2*a(n-52) -a(n-53) -a(n-54) -3*a(n-55) -2*a(n-56) +a(n-57) -2*a(n-58) -a(n-59) +a(n-63) -a(n-64) +a(n-65) +a(n-66) +a(n-69)
%e Some solutions for n=6
%e ..3....6....0....5....5....2....5....0....4....4....6....0....5....6....4....0
%e ..4....5....2....2....6....6....4....5....6....4....0....4....5....2....5....3
%e ..4....6....2....0....4....1....3....5....2....4....1....5....0....0....2....2
%e ..5....4....1....3....3....0....2....6....2....4....2....3....3....0....3....5
%e ..4....4....0....5....2....1....1....4....6....4....1....3....2....2....1....0
%e ..3....6....5....0....5....2....5....0....4....4....6....5....5....6....4....5
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 03 2014