login
A249658
Number of length 2+4 0..n arrays with every five consecutive terms having four times some element equal to the sum of the remaining four
1
2, 53, 164, 485, 1218, 2589, 4944, 8605, 13814, 21789, 32332, 46097, 63726, 85773, 114604, 149773, 191878, 241869, 300548, 371753, 454178, 548821, 656856, 779409, 922630, 1083277, 1262944, 1462789, 1684282, 1935745, 2212864, 2516841, 2849582
OFFSET
1,1
COMMENTS
Row 2 of A249656
LINKS
FORMULA
Empirical: a(n) = -a(n-3) -a(n-4) +a(n-5) -a(n-6) +a(n-10) +2*a(n-11) -a(n-12) +2*a(n-13) +3*a(n-14) +a(n-15) +a(n-16) +2*a(n-17) +a(n-18) +2*a(n-19) -2*a(n-21) +a(n-22) -3*a(n-24) -3*a(n-25) -2*a(n-26) -3*a(n-27) -2*a(n-28) -5*a(n-29) -3*a(n-30) -a(n-31) -a(n-32) -3*a(n-33) +3*a(n-36) +a(n-37) +a(n-38) +3*a(n-39) +5*a(n-40) +2*a(n-41) +3*a(n-42) +2*a(n-43) +3*a(n-44) +3*a(n-45) -a(n-47) +2*a(n-48) -2*a(n-50) -a(n-51) -2*a(n-52) -a(n-53) -a(n-54) -3*a(n-55) -2*a(n-56) +a(n-57) -2*a(n-58) -a(n-59) +a(n-63) -a(n-64) +a(n-65) +a(n-66) +a(n-69)
EXAMPLE
Some solutions for n=6
..3....6....0....5....5....2....5....0....4....4....6....0....5....6....4....0
..4....5....2....2....6....6....4....5....6....4....0....4....5....2....5....3
..4....6....2....0....4....1....3....5....2....4....1....5....0....0....2....2
..5....4....1....3....3....0....2....6....2....4....2....3....3....0....3....5
..4....4....0....5....2....1....1....4....6....4....1....3....2....2....1....0
..3....6....5....0....5....2....5....0....4....4....6....5....5....6....4....5
CROSSREFS
Sequence in context: A041337 A139844 A249657 * A249659 A249660 A249661
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 03 2014
STATUS
approved