The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A249582 Norm of the complex coefficients in 1/(1 - x + (1-2*I)*x^2). 0
 1, 1, 4, 17, 29, 160, 377, 1377, 4468, 13369, 46573, 141440, 469169, 1499329, 4795556, 15600033, 49731901, 161026720, 516993193, 1663865633, 5361647252, 17231870281, 55519546637, 178586104320, 574860647521, 1850350458241, 5954177494084, 19166631789617, 61680287845469 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Limit a(n)^(1/n) = r = 0.3107068879... = (1+sqrt(73) - sqrt(2*sqrt(73)-6))/20 where r = norm(a+b*I) with a = (1 - sqrt((sqrt(73)-3)/2) + sqrt(2*sqrt(73)+6))/10 and b = (2 - sqrt(2*sqrt(73)-6) - sqrt((sqrt(73)+3)/2))/10 such that (a+b*I) is a root of 1 - x + (1-2*I)*x^2 = 0. LINKS FORMULA G.f.: (1-5*x^2)/(1 - x - 8*x^2 - 5*x^3 + 25*x^4). EXAMPLE G.f.: A(x) = 1 + x + 4*x^2 + 17*x^3 + 29*x^4 + 160*x^5 + 377*x^6 +... From the complex series expansion: 1/(1 - x + (1-2*I)*x^2) = 1 + x + 2*I*x^2 + (-1 + 4*I)*x^3 + (-5 + 2*I)*x^4 + (-12 - 4*I)*x^5 + (-11 - 16*I)*x^6 + (9 - 36*I)*x^7 + (52 - 42*I)*x^8 + (115 + 12*I)*x^9 + (147 + 158*I)*x^10 +... we obtain this sequence as the norm of the above coefficients: a(0) = 1^2 = 1; a(1) = 1^2 = 1; a(2) = 2^2 = 4; a(3) = (-1)^2 + 4^2 = 17; a(4) = (-5)^2 + 2^2 = 29; a(5) = (-12)^2 + (-4)^2 = 160; ... PROG (PARI) {a(n)=norm(polcoeff(1/(1-x+(1-2*I)*x^2 +x*O(x^n)), n))} for(n=0, 30, print1(a(n), ", ")) (PARI) {a(n)=(polcoeff((1-5*x^2)/(1 - x - 8*x^2 - 5*x^3 + 25*x^4 +x*O(x^n)), n))} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Sequence in context: A273073 A272330 A163736 * A127547 A302410 A303177 Adjacent sequences:  A249579 A249580 A249581 * A249583 A249584 A249585 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 01 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 10:19 EDT 2021. Contains 343130 sequences. (Running on oeis4.)