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A Synopsis of the Basics as Covered in DCL-Chemy and DCL-Chemy II 

  

The idea of the dynamic coefficient list (or DCL for short) is that coefficients may assume diverse values 

over the course of an iterative procedure. In a preceding article, ‘DCL-Chemy Transforms Fibonacci-type 

Sequences to Arrays’ (DCL-Chemy), the formula 
1 2 0 1

( ) ( ) ; 0, 1
n n n

c F b F F F F
 

     is generalized to 
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      

 

Where  and  are the lists  = [b1, b2… bi] and  = [c1, c2… cj]. 

 

A sequence φ (where  = the order of φ = LCM(i,j)) is generated by applying terms in  and  in order, 

according to the iteration being performed. So, at the 1st iteration, the initial F0 and F1 are multiplied by c1 

and b1 respectively. At the 2nd iteration, F1 and F2 are multiplied by c2 and b2; on the 3rd iteration c3 and b3 

apply, and so on. After  iterations, the cycle repeats. 

 

That generates the first sequence: to start with  = [b2, b3… bi, b1] and  = [c2, c3… ci, c1] generates the next. 

Permuting  and  cyclically generates  distinct sequences. In the context of an array, these sequences are 

aligned vertically and designated as S1, S2, S3… S. Arrays are typically represented by Φ [][], with ,  

and  in numerical form. 

 

Define Fn/Fn–1, for n  ∞, as a limit ratio. As a rule, each sequence in an array converges, simultaneously 

and in two directions, to  positive and  negative limit ratios. Formulas derived in DCL-Chemy operate 

on the elements of Φ to provide the coefficients of  different quadratic equations (Qj) that have roots 

corresponding to two specific limit ratios. These sets of equations are called Q-sets. 

 

In the article DCL-Chemy II: Reflections and Other Symmetries, the order of terms in  and  was inverted 

to create complementary Q-sets. Further investigation revealed unexpected crossover connections between 

the roots of equations in these sets. This paper follows up on the discovery that symmetrical inversions of 

certain  and  configurations allow roots from the two sets to combine as points on hyperbolic curves. 
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Symmetric Inversions 

 

Definition: A symmetric inversion Φ  Φ is symmetrical with respect to the order of terms in  and . 

That is, it directly inverts/reverses/reflects the sequential order of the terms in each of the lists  and : 
 

   = [b1, b2… b]  [b , b1… b1] = [b1, b2… b]     = [c1, c2… c]  [c1, c2… c] 

 

For example: 
 

Φ3 [1,2,3][1,2,3] S1 S2 S3  Φ3 [3,2,1][3,2,1] S1 S2 S3 

F4 
14/18 

15/6 
11/12   14/6 

11/18 
15/12 

F 
4/6 

9/6 
4/6   8/6 

3/6 
6/6 

F2 
2/6 

3/3 
1/2   2/2 

1/3 
3/6 

F1 
1/3 

1/1 
1/2   1/1 

1/3 
1/2 

F0 0 0 0   0 0 0 

F1 1 1 1   1 1 1 

F2 1 2 3   3 2 1 

F 4 9 4   8 3 6 

F4 15 11 14   11 15 14 

F5 19 40 54   57 36 20 

F2 68 153 68   136 51 102 

 

Table 1: Symmetrical inversion of Φ3 [1,2,3][1,2,3]  Φ3 [3,2,1][3,2,1] 

 

An equation that uses terms from these arrays to construct quadratic equations (Qj) is stated below. The 

zeros (roots) of these Qj are the limit ratios to which the quotients Fn/Fn–1 in table 1 columns converge. 

 

 
2

, , , ,
( )

j j k j k j k j j kjQ F x F F c x F c
      

         (1.1) 

Now (1.1) applies to table 1 sequences to create the equations of corresponding color in table 2. We’ll call 

these two sets of three equations, Q-sets. (The order of the last two Qj in the set to the right has been 

reversed, so as to have Qj with identical c coefficients on the same line.)  

 
2

1 1 1
4 13 9Q x x       

2

1 1 1
8 5 9Q x x    

2

2 2 2
9 5 8Q x x       

2

2 2 2
6 11 8Q x x    

2

3 3 3
4 11 12Q x x       

2

3 3 3
3 13 12Q x x    

 

Table 2: Qj and Qj coefficients as derived from the columns in table 1 

 

Note that b + b = c + c. In preparation for a demonstration of how roots of these equations combine as 

points on the hyperbolic curve in figure 1, below, it is instructive to first examine a simple case. 

mailto:ixitol@yahoo.com
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Consider the equation Q = ax2 + bx + c. Let a = 1 and b = c. Then two formulas that equate the roots of this 

equation, r+ and r–, to its coefficients will combine as below to create a third formula: 
 

i) ii) iii) 0b c r r b r r c r r r r
       

           

 

A more familiar rendition of iii is 

 

 0xy x y    (1.2) 

 

Thus the roots of, say, Q = x2 – x – 1 will combine to identify two points, represented by large black dots 

on the graph of (1.2), in figure 1 below. (Roots equate in turn to both x and y; hence, two points per pair.) 

 

 
 

Figure 1: Quadratic roots combine as points on the hyperbola xy + x + y = 0 

 

The graph of (1.1) is hyperbolic, comprising curved lines that are mirror images. They are symmetrical with 

respect to two diagonals, one that passes through the origin (0,0) and a perpendicular that intersects that at 

(–1,–1). Call the curved line that transits the origin l1 and the other l2. Of the various points that are marked 

on l1, those black in color are, as stated, the roots of Q . We’ll see now how the others are derived. 

 

When b = c, a quadratic’s real roots identify points on l1 or l2 of (1.2). For  = ,  > 1, it seems that a pair 

of equations is required, and a root from each, taken in combination, identifies a point on the hyperbola. 

With  =  and  = 3 in table 1, the table 2 equations must each contribute a root for a point on (1.2). 

 

For example, take the equations atop table 2: Q1 and Q1. 4x2 – 13x – 9 has roots r1+ = 3.8365, r1– = –0.5865; 

8x2 – 5x – 9 has roots r1+ = 1.4182, r1– = –0.7932. Then, in (1.2), 3.8365(–0.7932) + 3.8365 –0.7932 = 

1.4182(–0.5865) + 1.4182 –0.5865 = 0. These numbers locate four large red dots on l1 in figure 1. 

 

A symmetry identified earlier in the graph of (1.1) is now used to map points from l1 to l2. Since x = y at 

both (0,0) and (–2,–2), this entails adding 2 to each root and reversing its sign. Thus to map the black dots 

to l2, take (1.618 + 2)(–1) = –3.618 and (–0.618 + 2)(–1) = –1.382. Multiplying (x + 3.618)(x + 1.382) gives 

x2 + 5x + 5, the roots of which locate the two, smaller black dots on l2 in figure 1. 



 3 

Adapted, this procedure also maps the colored dots to l2 and gives the equations below. 

 
2

1 1 1
4 29 33Q x x        2

1 1 1
8 37 33Q x x     

2

2 2 2
9 41 38Q x x        2

2 2 2
6 35 38Q x x     

2

3 3 3
4 27 26Q x x        2

3 3 3
3 25 26Q x x     

 

Table 3: Quadratics built on roots reflected to l2 

 

The table 3 equations of the same color interact in the same way as those in table 2. That is, an r+ (i.e., the

2
4b ac  ) root will pair with the r– (the 

2
4b ac ) root of its complementary equation to define a 

point (small dot) on the line l2. Based on the structure of this mapping algorithm, it seems appropriate to 

identify equations with roots on l1 as primary, and those with roots on l2 as secondary or reflected. 

 

Certain attributes of the primary Qj are unchanged by mapping l1 roots to l2; e.g., the a coefficients, their 

shared discriminant (D) and so forth. Reasons for this will later become clear. 

 

The procedure so far: DCLs generalize a -sequence formula to generate sets of sequences that we align in 

an array. When  =  (within not-yet-entirely-defined constraints), a symmetrical inversion of their terms 

gives another array related in a particular way. Then formula (1.1) applies to find coefficients of equations 

that have roots to which the ratios of adjacent terms in the sequences converge. These equations form the 

sets Qj and Qi, roots of which combine as points on a hyperbolic line. Then, as just explicated, the roots on 

l1 can be mapped to l2, and coefficients for two new sets of equations derived from that. 

 

In sum, these procedures require us to: 1) construct arrays Φ and Φ; 2) use (1.1) to derive coefficients for 

the primary equations Qj and Qi; 3) map these roots to l2; 4) use these l2 roots to find coefficients for two 

sets of secondary equations. All in all, a bit of labor… Can a more direct method be found? 

 

Quadratic Coefficient Matrices 

 

Remarkably, a shortcut exists that ultimately obviates all of this effort. It begins with configuring Q-set 

coefficients as matrices, and deriving a set of transform matrices from that. 

 

To derive the first transform matrix, let coefficients of table 2 equations be arrayed in two 3x3 matrices M 

and M as below. The operation M-1 · M = M-1 · M produces, as a ‘quotient’, a matrix (T1) that transforms 

one to the other: i.e., M · T1 = M and M · T1 = M. Next, the matrix M' is fashioned from the coefficients of 

the Qj' in table 3 (those with roots that identify points on l2). Then M-1 · M' = T2, the transform matrix at the 

bottom right below: 

 

1

1

1

1

1

2

4 13 9 8 5 9 1 0 0

9 5 8 6 11 8 1 1 0

4 11 12 3 13 12 1 2 1

4 13 9 4 29 33 1 4 4

9 5 8 9 41 38 0 1 2

4 11 12 4 27 26 0 0 1

M M T

M M T









   

          

   

 

        

 

     
     
     
     
     

     
     
     
     
     

 

 

Table 4: Matrix ‘division’ derives the transforms T1 and T2 
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Finally, M-1 · M' = T1 · T2 finds the last of the four transforms to complete the group below: 

 

 
2 30 1

1 0 0 1 0 0 1 4 4 1 4 4

0 1 0 1 1 0 0 1 2 1 3 2

0 0 1 1 2 1 0 0 1 1 2 1

T T T T          

       
       
       
       
       

 

 
Table 5: The four T-matrices 

 

These matrices are isomorphic by matrix multiplication to the Klein four-group. Henceforth it requires just 

the construction of one array to find all of the related Q-set coefficients. Moreover, the yet-to-be-determined 

conditions on  and  needed to ensure that Φ and Φ equations will have the same discriminant are no 

longer relevant. This because Tj is, conformal to any 3-column matrix M (but zeros in M can give strange 

results). E.g., take the two random coefficient matrices (i and ii) below. 

 

 
1 1

i) (12 14 13) (11 12 13) ii) (2 1 6) ( 3 11 6)T T           

 

These examples open views to new territory: i.e., the (i) equation 12x2 + 14x + 13 has complex (conjugate) 

roots; r+ = −0.5417 + 0.9345i and r– = −0.5417 − 0.9345i. As expected, the roots of 11x2 + 12x + 13 are 

complex and conjugate as well; r+ = −0.5833 + 0.8620i and r– = −0.5833 − 0.8620i. These imaginary 

components notwithstanding, the complementary roots combine as usual as solutions to xy + x + y = 0. (But 

how can pairs such as these be graphed as points on a line or surface?) 

 

The second (ii) example is unusual in that the roots of 2x2 – x – 6 combine with –3x2 – 11x – 6 roots in two 

ways. That is, the roots 2 and –0.6666 identify a point on l1, but –3 and –1.5 are points on l2. The roots of 

equations that T2 and T3 return have the same pattern. 

 

Interesting variants may perhaps be found in other random examples, but generalizing to Q = ax2 + bx + c 

helps clear up some of the mystery. 

 

    2

1 0 0

1 1 0 2 ) (a ) (2 )

1 2 1

a b c a b c c b c Q b c x c b x c            

 
 
 
 
 

 

 

Figure 2: The mechanics of the T1 transform 

 

While this clarifies the mechanics of the process, it’s still a surprise that a simple shuffle of Q’s coefficients 

creates a Q with such peculiar complimentary properties inherent to its roots. Now even the T1 transform is 

no longer needed: just put a, b and c into (a – b + c)x2 + (2c – b)x + c = 0 and we’re done. 

 

To verify this process, doing the math shows that the roots of ax2 + bx + c and (a – b + c)x2 + (2c – b)x + c 

zero out in the equation below: 

 

2 2 2 2
4 2 4 4 2 4

0
2 2( ) 2 2( )

b b ac b c b ac b b ac b c b ac

a a b c a a b c

           
   

   
 

Then (a  b  c)  T2 gives ax2 + (4a – b)x + 4a – 2b + c, which has the roots 
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2

4
2

2

b b ac

a

 
    

 

The roots above illustrate perfectly the process used to create them, which was to add 2 to the original root 

and change its sign. Yet while these four T-matrices simplify things considerably, they apply only to a 

specific case (i.e., k = 1) of the more general version of (1.2) below: 

 

 0kxy x y     (1.3) 

 

For example, let k = 2: then matrices constructed on Φ3 [2c1,2c2,2c3][c1,c2,c3] coefficients have roots on 2xy 

+ x + y. The transforms (T') that work for these matrices are juxtaposed above the originals below. 
 

 
2 30 1

1 0 0 1 0 0 1 2 1 1 2 1

0 1 0 2 1 0 0 1 1 2 3 1

0 0 1 4 4 1 0 0 1 4 4 1

T T T T             

       
       
       
       
       

 

 

2 30 1

1 0 0 1 0 0 1 4 4 1 4 4

0 1 0 1 1 0 0 1 2 1 3 2

0 0 1 1 2 1 0 0 1 1 2 1

T T T T          

       
       
       
       
       

 

 

Strangely, the T-matrices themselves seem to have undergone transformations, where 1 and 2 have swapped 

places and all three are rotated by 180º. Generalizing these transforms clears this up. We’ll see that T1 and 

T2 have an inverse relationship. One shrinks as the other grows and, together, these matrices model both 

the curvature of kxy + x + y and the distance between its lines. (I.e., note that the absolute value of both x 

and y at the apex of l2 is 2/k.) Setting k as an upper index, the set of generalized T-matrices that transform 

a matrix built on coefficients in the set Q derives, empirically, as: 
 

2 2

2 2

0 1 2 3

1 0 0 1 0 0 1 4 4 1 4 4

0 1 0 1 0 0 1 2 3 2

0 0 1 2 1 0 0 1 2 1

k k k

k k k k

T T k T k T k k

k k k k

          

      
      
      

              

 

 

Table 6: The generalized transformation matrix set for kxy + x + y 

 

As a check, these generalized T-matrices too are isomorphic to the Klein group. For the full equation set, 

let M = (a  b  c) and multiply it in turn by the 
k

j
T  in table 6. 

 

 

2 2 2

0 1

2

22

2 2

23

( ) (2 )

4 4 2( )

4 4 2( ) ( 3 2 )

k

k

k

T ax bx c T ck bk a x ck b x c

a a bT ax b x c
k kk

a a bT ck bk a x b ck x c
k kk

        

     

        

  

 

Figure 3: The set of generalized formulas for pairing quadratic roots on kxy + x + y 
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The roots of these figure 3 equations combine and reflect to zero out in kxy + x + y = 0. If Q’s roots are real, 

the +/– complements pair as points on (1.3) lines as well. Yet, though Q-sets and T-matrices are no longer 

needed to pair roots on (1.3), in generalizations to follow they are still of good use. 

 

Some Symmetries of xy + bx + cy = 0 
 

The scope of this venture expands as rotations and reflections of xy + x + y = 0 open other areas of the plane. 

The patterns next to be considered are brought into evidence as the equation in (1.2) is generalized to: 

 

 0xy bx cy    (1.4) 

 

In the interests of symmetry and simplicity, b and c values are allowed to be either of ±1. Hence, there are 

four variants of (1.4) to consider: 

 

xy + x + y  xy – x – y xy – x + y xy + x – y 

 

These equations correlate by color to the hyperbolas H1, H2, H3 and H4 in the graph below: 

 

 
 

Figure 4: Reflections and rotations of xy + x + y 
 

It is evident from the symmetries in figure 4 that simple signs reversals of table 2 and 3 roots will, in the 

three possible combinations, shift the yx + x + y lines into the other three quadrants. The matrix (Ts) below 

is used to this end: 

 

 

1 0 0

0 1 0

0 0 1

S
T  

 
 
 
 
 

  (1.5) 

  

For convenience, the matrices based on coefficients in tables 2 and 3 are labeled in order (left to right by 

top and bottom rows); M, M1, M2 and M3. Each, in turn, is multiplied by TS to give the set below. 
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4 1 5

2 6 3 7

4 13 9 8 5 9

9 5 8 6 11 8

4 11 12 3 13 12

4 29 33 8 37 33

9 41 38 6 35 38

4 27 26 3 25 26

S S

S S

M T M M T M

M T M M T M

 

       

 

 

       

 

   
   
   
   
   

   
   
   
   
   

 

 

Table 7: TS reflects roots on xy + x + y across the line y = –x to xy – x – y 
 

The procedure used to find the first set of transforms is employed to find a new set: 

 

1 1 1

4 5 4 4 6 5 4 7 6

1 0 0 1 4 4 1 4 4

1 1 0 0 1 2 1 3 2

1 2 1 0 0 1 1 2 1

M M T M M T M M T
  

 

           

 

     
     
     
     
     

 

 

Table 8: The transform matrix set that, with T0, pairs quadratic roots on xy – x – y 
 

These matrices too compose the Klein group. Generalizing as before: 

 
2 2

2 2

4 5 6

1 0 0 1 4 4 1 4 4

1 0 0 1 2 3 2

2 1 0 0 1 2 1

k k k

k k k k

T k T k T k k

k k k k

 

     

 

    
    
    

          

 

 

Table 9: Table 8 matrices generalized to map roots to kxy – x – y 

 

Note that the net result has been to shift the negative signs in the original transforms (Tj, j = 1..3) from 

horizontal to vertical. While a similar procedure may be invoked to derive transforms for kxy – x + y and 

kxy + x – y, an expedient is to apply TS directly to the transform sets themselves. In tables 10 and 11 below, 

TS applies in turn to the Tj in tables 6 and 9. 

 
2 2

1 7 2 8 3 9

2 2

1 0 0 1 4 4 1 4 4

1 0 0 1 2 3 2

2 1 0 0 1 2 1

k k k

S S S

k k k k

T T T k T T T k T T T k k

k k k k

 

            

 

    
    
    

          

 

 

Table 10: The generalized T-matrices that map roots to kxy – x + y 

 
2 2

10 11 12

2 2

4 5 6

1 0 0 1 4 4 1 4 4

1 0 0 1 2 3 2

2 1 0 0 1 2 1

S S S

k k k

k k k k

T T T k T T T k T T T k k

k k k k

        

    
    
    

          

 

 

Table 11: Generalized transforms that map roots to kxy + x – y 
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These last two sets are not groups, but members of one are inverse to the other:  

 

7 10 8 11 9 12
1

k k k k k k
T T T T T T     . 

 

Another transform is, for generality, included in the mix: 

 

 

1 0 0

0 1 0

0 0 1

RT



 



 
 
 
 
 

  (1.6) 

 

TR, the identity T0 with signs reversed, transforms the transforms. Applied to the T-matrices it reverses the 

signs of each matrix and expands the four-groups to E8 (the elementary abelian group of order 8). 

 

Note too that certain symmetries of T1 compose elements of the dihedral/symmetric group D3/S3. 

 

 

1 0 0 0 0 1 1 0 0 1 2 1 1 2 1 0 0 1

0 1 0 0 1 0 1 1 0 0 1 1 1 1 0 0 1 1

0 0 1 1 0 0 1 2 1 0 0 1 1 0 0 1 2 1

       

           
           
           
           
           

 

 

Table 12: The group D3/S3 represented as reflections and a composition of reflections of T1 

 

These patterns also work with T4 in table 8. (Are any interesting relationships to be discovered among the 

roots of these equations?) Table 12 entries can also be generalized using the established patterns below. For 

k > 1, D remains invariant, but the group properties are lost. 

 
2 2

2 2

1 0 0 0 0 1 1 0 0 2 1 0 0 1 1 2

0 1 0 0 1 0 1 0 1 0 0 1 0 1

0 0 1 1 0 0 2 1 1 0 0 1 2 0 0 1

k k k k

k k k k

k k k k

       

          
          
          

          
          

 

 

Table 13: Elements of table 12 generalized as in table 11 

 

The table 13 matrices, applied in order, generate the equations below. 

 
2 2

2 2

2 2

1) 4) (2 )

2) 5) ( ) (2 )

3) ( ) (2 ) 6) (2 )

ax bx c ax a b x a b c

cx bx a a b c x a b x c

a b c x c b x c cx c b x a b c

      

      

         

 

 

Figure 5: Generalized quadratics from table 12 transforms 

 

Let the two rightmost matrices in table 12 be designated T13 and T14. They too are defined as ‘transforms’ 

in this context, because the discriminant of the equations they create (5 and 6 in figure 5) is, like the others, 

identical to that of equation 1. The generalizing patterns in table 13 can evidently be tacked on to almost 

any transform matrix, including the more general forms seen later. Interesting that for T7 and T10, these 

patterns correlate exactly to the exponential powers: 
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7 10

2 2

1 0 0 1 0 0 1 0 0 1 0 0

1 0 1 1 0 1 0 1 1 0

2 1 1 2 1 2 1 1 2 1

k k

k k

T k T k

k k k k

     

 

       
       
       
       
       

 

 

Table 14: For T7 and T10, the generalized forms match the exponential powers 

 

A Distinguishing Property of T-Matrices Defined 

 

An attribute common to (indeed, part of the definition of) T-matrices is (a  b  c)  T leaves D, the discriminant 

of the original equation ax2 + bx + c, unchanged. To see why this is so, start with the Tj (i.e., numbered) 

matrices in their general forms. 

 

 

2 2 2 2

2 2

2 2 2 2

2 2 2 2

2 2

2 2 2 2

2 2

2 2

2 2

2 2

D E

F G

s rs r r rs s

T st rt s rs T rs rt s st

t st s s st t

t st s s st t

T st rt s rs T rs rt s st

s rs r r rs s

   

   

   
   
   
   
   

   
   
   
   
   

 (1.7) 

 

Every Tj, j = 1..14, fits into the (1.7) templates, where lexical (alphabetical) order corresponds to numerical 

order. Note that any (1.7) matrix generates the others by vertical/horizontal flips. The chiral symmetries 

have effects that will be explored later. Another general consideration is signage: the purely positive pattern 

is seen in S; TS operates on S to generate the set of signage patterns seen below. 

 

1 0 0

0 1 0

0 0 1

S S S S S
S T ST T S T ST

           

                 

           

         
         
         
         
         

 

 

Table 15: Four T-matrix signage patterns 

 

Multiplying by TR completes the set: 

 

 
R S R S R S S R

ST ST T T ST T ST T

           

               

           

       
       
       
       
       

  

 

Table 16: Four more patterns complete the signage set 

 

TR and TS are of a form different from the Tj, but they too leave D unchanged. Next, the four matrices in 

(1.7) are generalized to TH in (1.8). Lexical order is, for the purpose of the proof to follow, now unimportant; 

all permutations of r, s, t and u give the same result. 
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2 2

2 2

2

2

t tu u

rt ru st su

r rs s

 

 
 
 
 
 

2
T   (1.8) 

Theorem: 

 

The quadratic equation with coefficients (a  b  c)  T2 has, up to a square factor, the same discriminant as 

ax2 + bx + c.  

 

Proof: 

 

Multiplying (a  b  c)  T2 gives the equation 

 

     2 2 2 2 2
 2 2at brt cr x atu b ru st crs x au bsu cs           (1.9) 

 

Solving by the quadratic formula leaves 8acrstu – 4acr2u2 – 4acs2t2 – 2b2rstu + b2r2u2 + b2s2t2 under the 

radical. This factors to (b2 – 4ac)(ru – st)2, leaving b2 – 4ac unchanged. 

 

■ 

 

Of course, when ru – st equals zero, the discriminant vanishes. A more general proof would also show (as 

trials confirm) that all of the signage patterns identified in tables 15 and 16 give this same result. 

 

As a corollary, the proof holds for the transpose of T2. I.e.,    
TT

H H
a b c T T a b c   in the 

sense that they both produce the quadratic coefficients in (1.9). 

 
2 2

2 2 2 2 2

2 2

2 2 ( ) (2 ( ) 2 )

t rt r a

tu ru st rs b at brt cr x atu b ru st crs x au bsu cs

u su s c

          

  
  
  

  
  

 

 

A matrix built on r = s = t = u = j reduces to a singular sort of ‘Pascal matrix’, comprising, in this 3 x 3 

case, just row 2 of the triangle. More on this type of matrix later. 

 

     

2 2 2

2 2 2

2 2 2

2

2 1 2 1 1 2 1

2 1 2 1 1 2 1 2 2 2 1 2 1

2 1 2 1 1 2 1

:

j j j

j j j j a b c a b c a b c a b c

j j j

        

     
     
         

    

 

 

Table 17: r = s = t = u reduces quadratic coefficients to those of the expansion of (x + 1)2 

 

T-Matrices as Sequence Generators  

 

Next to be examined are sequences that emerge when T2-type matrices are taken to successive powers. A 

T2 matrix property is that it has, under exponentiation, an invariant form. As an example, the matrices below 

show that corner values remain squares as T2 is squared and cubed. This establishes the pattern, and it will 

be from the corners that sequence terms are taken. 

http://en.wikipedia.org/wiki/Pascal_matrix
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2 2 2 2

2

2 2 2 2

3 2 2 2 2 2

3

2 2 2 2 3 2

( ) ( )

( ) ( )

(2 ) ( )

( ) (2 )

ru t u s t

r s t ru s

rtu rsu t u ru s st t

r ru s st t rsu rtu s

 



 

    



    

 
 
 
 
 

 
 
 
 
 

2

2

T

T

  (1.10) 

 

Now for some numerical examples. T10, with its uniformly positive signage, is first to be explored. Flipped 

on a horizontal axis, it creates a matrix (T15), the powers of which are representable as squares, products 

and sums of successive Fibonacci () numbers (A000045). Corners are read in the order T3,3, T3,1/T1,3 and 

T1,1. Let Fn represent the nth term of the -sequence, and note that T15 in table 18 is the same as TF in (1.7) 

with r = F0, s = F1 and t = F2. 

 

 
2 3 4

15 15 15 15

1 2 1 4 4 1 9 12 4 25 30 9

1 1 0 2 3 1 6 7 2 15 19 6

1 0 0 1 2 1 4 4 1 9 12 4

T T T T   

       
       
       
       
       

 

 

Table 18: T15 to successive powers generates the squares of successive -sequence terms 
 

In table 18, F0 = 0 as the initial of the three consecutive Fn results in just one new squared term for each 

increment of the exponent. Starting with 
3

15
T taken to successive powers gives the squares of three such 

terms for every increment. 

 

3 0 3 3 2 3 3

15 15 15 15

1 0 0 9 12 4 169 208 64 3025 3740 1156

( ) 0 1 0 6 7 2 ( ) 104 129 40 ( ) 1870 2311 714

0 0 1 4 4 1 64 80 25 1156 1428 441

T T T T   

       
       
       
       
       

 

 

Table 19: 
3

15
T  to successive powers generates the squares of the next three -sequence terms 

 

Taking 
3

15
T  to negative powers has the effect of imposing the inverse signage pattern and reversing the 

order of the numbers in the corners on the main diagonals of the squares. 

 

3 1 3 2 3 3

15 15 15

1 4 4 25 80 64 441 1428 1156

( ) 2 7 6 ( ) 40 129 104 ( ) 714 2311 1870

4 12 9 64 208 169 1156 3740 3025

T T T
  

  

        

  

     
     
     
     
     

 

 

Table 20: The effect of negative exponents on 
3

15
T  

https://oeis.org/A000045
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The change in corner values relates to other changes, which correspond to flipping the matrix on both the 

horizontal and vertical axes. Reading in the same fashion then gives numbers to the left of zero in reverse 

order to those on the right. 

 

The terms of the -sequence to the left of zero have alternating signs. A question for future reference is; for 

which of the squares in the corners do we take the negative roots? The truncated Fibonacci sequence –8, 5, 

–3, 2, –1, 1, 0 corresponds to F–6, F–5, F–4, F–3, F–2, F–1, F0; thus an even negative index means the term has 

a negative sign. Now, referencing the matrices in table 20, we see that an odd exponent accords with 

negative roots in T3,3 and T1,1, and positive in T3,1/T1,3. An even exponent means positive roots in T3,3 and 

T1,1, and negative in T3,1/T1,3. We’ll return to this later… 

 

A generalized form of this matrix (T) is in (1.11) below. 

 

 

2 2

1 1

2

1 1 1 1

2 2

1 1

2

2

n n n n

n

n n n n n n n

n n n n

F F F F

T F F F F F F F

F F F F



 

   

 

 

 
 
 
 
 

  (1.11) 

 

T10 is now squared, and again flipped on a horizontal axis. 

 

2 3 4

16 16 16 16

4 4 1 25 20 4 144 120 25 841 696 144

2 1 0 10 9 2 60 49 10 348 289 60

1 0 0 4 4 1 25 20 4 144 120 25

T T T T   

       
       
       
       
       

 

 

Table 21: T16 to successive powers generates the squares of successive Pell numbers 

 

This is the basis for a matrix that does for Pell numbers (0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741… 

A000129) what 
15

n
T  does for Fibonacci numbers. 

 

 

2 2

1 1

2

1 1 1 1

2 2

1 1

2

2

n n n n

n

n n n n n n n

n n n n

P P P P

P P P P P P P P

P P P P



 

   

 

 

 
 
 
 
 

 (1.12) 

 
3

16

n
T gives three Pell numbers for every increment of n. 

 

0 3 6 6

16 16 16 16

1 0 0 144 120 25 28561 23660 4900 5654884 4684660 970225

0 1 0 60 49 10 11830 9801 2030 2342330 1940449 401880

0 0 1 25 20 4 4900 4060 841 970225 803760 166464

T T T T   

       
       
              
       

 

 

Table 22: 
3

16

n
T  generates three terms of the Pell sequence for each increment of n 

 

T16 to negative powers gives the now-familiar patterns below. 

https://oeis.org/A000129
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3 6 9

16 15 15

4 20 25 841 4060 4900 166464 -803760 970225

10 49 60 -2030 9801 -11830 -401880 1940449 -2342330

25 120 144 4900 -23660 28561 970225 -4684660 5654884

T T T
  

 

    



     
     
          
     

 

 

Table 23: 
3

16

n
T


gives the familiar rotational symmetry and signage pattern 

 
 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9  

… 985 –408 169 –70 29 –12 5 –2 1 0 1 2 5 12 29 70 169 408 985 … 

 
Table 24: A few terms of the Pell sequence 

 

Table 24 shows that again an even negative index means the term has a negative sign. And, as before, table 

22 shows that an odd exponent accords with negative square roots in T3,3 and T1,1, and positive in T3,1/T1,3. 

An even exponent means positive roots in T3,3 and T1,1, and negative in T3,1/T1,3. 

 

Generalizing, 
10

k
T  flipped on a horizontal axis generates Fn–1 + kFn–1  =  Fn+1 (e.g., k = 3 gives A006190)..  

 

Next, vertical axis flips are used to explore the TF/TG chirality seen in (1.7). The TF-type matrix 
2

15
T  in table 

17 is reflected vertically to the TG form to create T17 in table 25. 

 

0 2 3 4

17 17 17 17 17

1 0 0 1 4 4 9 24 16 49 140 100 289 816 576

0 1 0 1 3 2 6 17 12 35 99 70 204 577 408

0 0 1 1 2 1 4 12 9 25 70 49 144 408 289

T T T T T    

         
         
                  
         

 

 

Table 25: T17, chiral to 
2

15
T , generates a distinctive kind of sequence 

The corners of these matrices, now read in the order T3,1, T3,3/T1,1 and T1,3, are squares of the sequence 

A249576: 0, 1, 0, 1, 1, 2, 2, 3, 4, 5, 7, 10, 12, 17, 24… 

 

T17, taken to negative powers, gives the matrices below. 

 

1 2 3 4

17 17 17 17

1 4 4 9 24 16 49 140 100 289 816 576

1 3 2 6 17 12 35 99 70 204 577 408

1 2 1 4 12 9 25 70 49 144 408 289

T T T T
   

   

           

   

       
       
              
       

 

 

Table 26: T17 to successive negative powers 

 

Taking the table 19 Fibonacci matrices to negative powers in table 20 had (beyond the signage changes) 

the effect of ‘transposing’ 
3

15

n
T across the minor diagonal. Thus, when table 20 matrices are read in the same 

order as table 19 entries, terms to the left of zero are in reverse order to those on the right. However, taking 

table 25 entries to negative powers has a different effect, and when table 26 matrices are read in the same 

direction, there’s a marked difference in the order to the left of zero. The sequence below is A249576 

extended to the left. The significance of the three alternating colors is noted anon. 

https://oeis.org/A006190
https://oeis.org/A249576
https://oeis.org/A249576
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…–70, 99, –140, 29, –41, 58, –12, 17, –24, 5, –7, 10, –2, 3, –4, 1, –1, 2, 0, 1, 0, 1, 1, 2, 2, 3, 4, 5, 7, 10, 12, 

17, 24, 29, 41, 58, 70, 99, 140, 169, 239, 338, 408, 577, 816, 985, 1393, 1970, 2378, 3363, 4756, 5741, 

8119, 11482, 13860, 19601, 27720, 33461, 47321, 66922, 80782, 114243, 161564, 195025, 275807… 

 

Left-of-zero numbers, aligned in ‘packets’ of three, ascend in absolute value from left to right. While this 

pattern is unusual, note that it ‘factors’ into three sequences of a more conventional form.  

 

–70, 29, –12, 5, –2, 1, 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, 195025… 

 

99, –41, 17, –7, 3, –1, 1, 1, 3, 7, 17, 41, 99, 239, 577, 1393, 3363, 8119, 19601, 47321, 114243, 275807… 

 

–140, 58, –24, 10,–4, 2, 0, 2, 4, 10, 24, 58, 140, 338, 816, 1970, 4756, 11482, 27720, 66922, 161564… 

 

Sequences within sequences… defining an as the nth term of A249576, note that: 

 

a3n = 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, 195025… = A000129 

 

a3n+1 = 1, 1, 3, 7, 17, 41, 99, 239, 577, 1393, 3363, 8119, 19601, 47321, 114243, 275807… = A001333 

 

a3n+2 = 0, 2, 4, 10, 24, 58, 140, 338, 816, 1970, 4756, 11482, 27720, 66922, 161564… = A163271 

 

Taking the negatives exponents to higher values and reversing the order: A249577 = 2, -1, 1, -4, 3, -2, 10, 

-7, 5, -24, 17, -12, 58, -41, 29, -140, 99, -70, 338, -239, 169, -816, 577, -408, 1970, -1393, 985, -4756… 

 

A lot of sequences for the effort of one. To continue in this fashion, 
3

15
T  in table 17 reflects vertically to 

create T18 in table 26. 

 

2 3 4

18 18 18 18

4 12 9 49 168 144 676 2340 2025 9409 32592 28224

2 7 6 28 97 84 390 1351 1170 5432 18817 16296

1 4 4 16 56 49 225 780 676 3136 10864 9409

T T T T   

       
       
              
       

 

 

Table 27: T18, chiral to 
3

15
T , generates another compound sequence 

 

0, 1, 0, 1, 2, 3, 4, 7, 12, 15, 26, 45, 56, 97, 168, 209, 362, 627, 780, 1351, 2340, 2911, 5042… = A249578. 

 

Again, the main sequence factors to three others. I.e., a3n = A001353; a3n+1 = A001075; a3n+2 = A005320. 

 

To move on, we reference T2 in (1.8). So far, the base matrices have derived from Fibonacci-type T-matrices 

and were limited to three variables. But T2 accepts an arbitrary number in each corner. First is just to break 

the T3,3 = T1,1 symmetry with r = 1, s = 1, t = 2, u = 3. 

 

2 3 4

19 19 19 19

4 12 9 49 126 81 529 1380 900 5776 15048 9801

2 5 3 21 55 36 230 599 390 2508 6535 4257

1 2 1 9 24 16 100 260 169 1089 2838 1849

T T T T   

       
       
              
       

 

 

Table 28: T19 breaks the usual T3,3 = T1,1 symmetry 

https://oeis.org/A249576
https://oeis.org/A000129
https://oeis.org/A001333
https://oeis.org/A163271
https://oeis.org/A249577
https://oeis.org/A249578
https://oeis.org/A001353
https://oeis.org/A001075
https://oeis.org/A005320
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The table 27 matrices (and the identity) generate the sequence 0, 1, 1, 0, 1, 1, 2, 3, 3, 4, 7, 9, 10, 13, 23, 30, 

33, 43, 76, 99, 109, 142, 251, 327, 360, 469, 829, 1080, 1189, 1549, 2738, 3567, 3927… = A249579. 

 

Negative exponents generate entries in table 29. 

 

1 2 3 4

19 19 19 19

1 6 9 16 72 81 169 780 900 1849 -8514 9801

1 5 6 12 55 63 130 599 690 -1419 6535 -7524

1 4 4 9 42 49 100 460 529 1089 -5016 5776

T T T T
   

  

         

  

       
       
              
       

 

 

Table 29: T19 to negative powers 

 

Following the protocols for taking negative roots from alternate corners in alternate matrices that were 

derived earlier from table 20, we get this signage: …–33, 76, 43, –99, 10, –23, –13, 30, –3, 7, 4, –9, 1, –2, 

–1, 3… (These numbers in reverse order are A249580.) The pattern, of period 8, reads from right to left: 

 

           (1.13) 

 

This pattern, unusual and perhaps unique, is a glimpse of a bigger picture. Note that all four factor sequences 

have the usual alternating signs. Yet only those with a zero are numerical mirror images; the other two, 

green and blue, are ‘cross-wired’. 

 

…–360, 109, –33, 10, –3, 1, 0, 1, 3, 10, 33, 109, 360, 1189… purely positive terms (an > 0) are in A006190 

 

…829, –251, 76, –23, 7, –2, 1, 1, 4, 13, 43, 142, 469, 1549… an > 0 in A003688 

 

…469, –143, 43, –13, 4, –1, 1, 2, 7, 23, 76, 251, 829, 2738… an > 0 in A052924 

 

…–1080, 327, –99, 30, –9, 3, 0, 3, 9, 30, 99, 327, 1080, 3567… an > 0 in A052906 = 3A006190 

 

Moreover, removing one of the red duplicates from – + + – + – – + – + + – + – – + again leaves alternating 

signs: – + – + – + – + – + – +. This is what happens, e.g., in matrices where T1,3 = T3,1 and only one value 

is recorded. 

 

Another confirmation of this pattern’s accuracy is that the identity an = 3an-4 + an-8 (supplied for A249579 

by Colin Barker) works everywhere in the sequence. The color-coded versions makes this easy to verify… 

 

…–360, 829, 469, –1080, 109, –251, –142, 327, –33, 76, 43, –99, 10, –23, –13, 30, –3, 7, 4, –9, 1, –2, –1, 

3, 0, 1, 1, 0, 1, 1, 2, 3, 3, 4, 7, 9, 10, 13, 23, 30, 33, 43, 76, 99, 109, 142, 251, 327, 360, 469, 829, 1080, 

1189, 1549, 2738, 3567… 

 

Moreover, A100638 utilizes a 2 x 2 matrix that generates same sequences as the 3 x 3 in (1.8). This smaller 

matrix returns not the squares of sequence terms, but the terms themselves. 

 

 
t u

r s

 
 
 

1
T   (1.14) 

 

E.g., let r, s, t, u = 1,1,2,3 and take (1.14) to successive powers: 

https://oeis.org/A249579
https://oeis.org/A249580
https://oeis.org/A006190
https://oeis.org/A003688
https://oeis.org/A052924
https://oeis.org/A052906
https://oeis.org/A006190
https://oeis.org/A249579
https://oeis.org/wiki/User:Colin_Barker
https://oeis.org/A100638
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2 3 4

2 3 7 9 23 30 33 43
, , ,

1 1 3 4 10 13 76 99
A A A A   

       
       
       

  

This is A249579 again. As A is taken to successive negative powers, any signage ambiguities are resolved. 

 

 
1 2 3 4

1 3 4 9 13 30 43 99
, ,

1 2 3 7 10 23 33 76
A A A A

   
   

   
   

       
       
       

  

 

Sequence Generation Proceeds Using T1-Type Matrices 

 

Utilizing the simpler 2 x 2 matrix form in (1.14), something of note becomes apparent as A above is flipped 

on a vertical axis to create T20. 

 

2 3 4

20 20 20 20

1 2 3 4

20 20 20 20

3 2 11 8 41 30 153 112
, , ,

1 1 4 3 15 11 56 41

1 2 3 8 11 30 41 112
, , ,

1 3 4 11 15 41 56 153

T T T T

T T T T
   

   

   
   

   

       
       
       

       
       
       

 

 

Note that minus signs no longer alternate, but now lie on the antidiagonal. The sequence this creates is: 

 

…571, –209, –418, 153, 153, –56, –112, 41, 41, –15, –30, 11, 11, –4, –8, 3, 3, –1, –2, 1, 1, 0, 0, 1, 1, 1, 2, 

3, 3, 4, 8, 11, 11, 15, 30, 41, 41, 56, 112, 153, 153, 209, 418, 571… 

 

The signage pattern now, reading from right to left, is of period 4: 

 

 

       (1.15) 

 

A closer look at two (1.14) inverses explains this pattern. 

 

 

2

2 2 2 2 2 2 2 2

2

2 2 2 2 2 2 2

1 2

2

( )

2 2

(

2

,
)

2

ru s u s t

r u rstu s t r u rstu s t

r s t ru t

r

s u

ru st

u rstu s t r u rstu s

ru st

r t

ru tst ru st

 

 

   

 

   

 
 

 

 
 

  
  
  
  

   
   

1 1
T T   (1.16) 

 

If in the first (T-1) case, |ru| < |st| then [1,2] and [2,1] are negative and [1,1] and [2,2] are positive. Then in 

the T-2 case the denominator is positive so [1,2] and [2,1] are negative and [1,1] and [2,2] positive again. 

 
The color scheme makes it easy to see that an = 4an-4 – an-8. 

 

…571, –209, –418, 153, 153, –56, –112, 41, 41, –15, –30, 11, 11, –4, –8, 3, 3, –1, –2, 1, 1, 0, 0, 1, 1, 1, 2, 

3, 3, 4, 8, 11, 11, 15, 30, 41, 41, 56, 112, 153, 153, 209, 418, 571… 

https://oeis.org/A249579


 17 

Interesting properties of this sequence become more evident as it is factorized to its four constituents, fj, j 

= 1..4. Note first that f1 = f4, f3 = 2f3 and for all fj, |a-n| = |an|. However, per (1.16), the +/– signs are no longer 

evenly distributed: i.e., f1 and f4 are uniformly positive, but f2 and f3 are positive to the right of zero and 

negative to the left. In the earliest sequences (e.g., A249576), one of the adjacent duplicate terms was 

omitted, and the period 2 (alternating) signage pattern was seen. But omitting a duplicate here gives the 

period 3 pattern (from right to left) + – –. 

 

The formula now is an = 4an-1 – an-2. 

 

f1 = …571, 153, 41, 11, 3, 1, 1, 3, 11, 41, 153… 

 

f2 = …–209, –56, –15, –4, –1, 0, 1, 4, 15, 56, 209… an > 0 in A001353 

 

f3 = …–418, –112, –30, –8, –2, 0, 2, 8, 30, 112, 418…= 2  A001353 

 

f4 = …153, 41, 11, 3, 1, 1, 3, 11, 41, 153, 571… 

 

The matrices below show, for two incrementations, how the relationship between the terms in [1,2] and 

[2,1] (i.e., r and u) remains constant under exponentiation. 

 

 

2

2

2 3

2

2

( ) )
, ,

(

(

) )(

u ru s st t

r

u u s t

r ru s st tr s t

  
 

  

    
    

     
1 11T T T   (1.17) 

 

This investigation continues with r = 1, s = 2, t = 3, u = 4. 

 

2 3 4

21 21 21 21

3 4 13 20 59 92 269 420

1 2 5 8 23 36 105 164
T T T T   

       
       
       

 

 

Table 30: T21 is the first example with all corner values distinct 

 

The cyclical colors simplify confirming the identity an = 5an-4 – 2an-8 (from Colin Barker, A249581). 

 

0, 1, 1, 0, 1, 2, 3, 4, 5, 8, 13, 20, 23, 36, 59, 92, 105, 164, 269, 420, 479, 748, 1227, 1916, 2185, 3412, 

5597, 8740, 9967, 15564, 25531, 39868, 45465, 70996, 116461, 181860, 207391, 323852, 531243, 

829564, 946025, 1477268, 2423293, 3784100… 

 

Factored: 

 

0, 1, 5, 23, 105, 479, 2185, 9967, 45465, 207391, 946025… A107839 

 

1, 2, 8, 36, 164, 748, 3412, 15564, 70996, 323852, 1477268… A147722 

 

1, 3, 13, 59, 269, 1227, 5597, 25531, 116461, 531243, 2423293… A052984 

 

0, 4, 20, 92, 420, 1916, 8740, 39868, 181860, 829564, 3784100… = 4  A107839 

 

For this selection of r, s, t and u values, terms to the left of zero are most often fractional, but certain choices 

of r, s, t, u will always give integers for negative exponents. 

https://oeis.org/A249576
https://oeis.org/A001353
https://oeis.org/A001353
https://oeis.org/wiki/User:Colin_Barker
https://oeis.org/A249581
https://oeis.org/A107839
https://oeis.org/A147722
https://oeis.org/A052984
https://oeis.org/A107839


 18 

To see why, take the inverse of T2 in (1.8). the entries all have (ru – st)2 as a denominator. 

 

If r, s, t, u = j–1, j, j, j+1, then ((j–1)(j+1) – j2)2 = 1. 

 

If r, s, t, u = Fn–1, Fn, Fn, Fn+1, then the identity
2

n
F – Fn–1  Fn+1 = (–1)n+1 gives unity again.   

 

If r, s, t, u are consecutive Fn, (ru – st)2 is the left side of the identity Fn  Fn+3 – Fn+1  Fn+2 = (–1)n+1. 

 

Of course, there are also countless other number combinations that solve (ru – st)2 = 1; e.g., (4  5 – 3  7) 

and (2  17 – 5  7) are two. 

 

To continue with a few more examples, let r, s, t, u = 1, 2, 3, 5. 

 

22

3 5

1 2
T 

 
 
 

 

 

…–12649, 35307, 22658, –63245, –2640, 7369, 4729, –13200, –551, 1538, 987, –2755, –115, 321, 206, –

575, –24, 67, 43, –120, –5, 14, 9, –25, –1, 3, 2, –5, 0, 1, 1, 0, 1, 2, 3, 5, 5, 9, 14, 25, 24, 43, 67, 120, 115, 

206, 321, 575, 551, 987, 1538, 2755, 2640, 4729, 7369, 13200, 12649, 22658, 35307, 63245… 

 

A formula for this sequence is an = 5an-4 – an-8. For the constituents below, an = 5an-1 – an-2. The period 4 

signage pattern above gives the following factors. 

 

…–12649, –2640, –551, –115, –24, –5, –1, 0, 1, 5, 24, 115, 551, 2640, 12649… an > 0 in A004254 

 

35307, 7369, 1538, 321, 67, 14, 3, 1, 2, 9, 43, 206, 987, 4729, 22658… an > 0 in A002310 

 

22658, 4729, 987, 206, 43, 9, 2, 1, 3, 14, 67, 321, 1538, 7369, 35307… an > 0 in A002320 

 

–63245, –13200, –2755, –575, –120, –25, –5, 0, 5, 25, 120, 575, 2755, 13200, 63245… = 5  A004254 

 

T22, flipped horizontally, is T23. 

 

23

5 3

2 1
T 

 
 
 

 

 

These same Fibonacci numbers again give integers on the left side of the zeros. The period 8 signage gives 

the familiar period 2 in the factor sequences. The formula 6a4n + a4(n–1) = 6a4(n+1)  works throughout. 

 

…1697233, –657552, –986328, 382129, –275423, 106706, 160059, –62011, 44695, –17316, –25974, 

10063, –7253, 2810, 4215, –1633, 1177, –456, –684, 265, –191, 74, 111, –43, 31, –12, –18, 7, –5, 2, 3, –1, 

1, 0, 0, 1, 1, 2, 3, 5, 7, 12, 18, 31, 43, 74, 111, 191, 265, 456, 684, 1177, 1633, 2810, 4215, 7253, 10063, 

17316, 25974, 44695, 62011, 106706, 160059, 275423, 382129, 657552, 986328, 1697233, 2354785, 

4052018, 6078027, 10458821, 14510839, 24969660, 37454490, 64450159… 

 

…1697233, –275423, 44695, –7253, 1177, –191, 31, –5, 1, 1, 7, 43, 265, 1633, 10063, 62011, 382129, 

2354785, 14510839… an > 0 in A015451 

https://oeis.org/A004254
https://oeis.org/A002310
https://oeis.org/A002320
https://oeis.org/A004254
https://oeis.org/A015451
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…–657552, 106706, –17316, 2810, –456, 74, –12, 2, 0, 2, 12, 74, 456, 2810, 17316, 106706, 657552, 

4052018, 24969660… an > 0 in A078469; to divide this sequence by 2 gives A005668 

 

…–986328, 160059, –25974, 4215, –684, 111, –18, 3, 0, 3, 18, 111, 684, 4215, 25974, 160059, 986328, 

6078027, 37454490… to divide this sequence by 3 gives A005668 

 

…382129, –62011, 10063, –1633, 265, –43, 7, –1, 1, 5, 31, 191, 1177, 7253, 44695, 275423, 1697233, 

10458821, 64450159… by absolute value, this is A015451 in reverse 

 

The T1/T2 Relationship Implies a Family of Matrices 

 

The relationship between these 2 x 2 and 3 x 3 matrices implies the existence of a larger, possibly infinite, 

family of n x n matrices. Since 
n

1
T  generates four terms of a sequence (S) and 

2

n
T  has the squares of those 

same four terms in its corners (call this sequence S2), perhaps there is, for any integer n, an (n+1)2 matrix 

(Tn) with corners containing terms of Sn, i.e., the sequence comprising the nth power of T1 terms. We’ll add 

one more matrix to those already extant, to help in the derivation of three more. 

 

  

2 2

2 2

0 1 2

2

2

1

t tu u

rt ru st su

r rs s

t u

r s
  

 
   
   
   

 

T T T   (1.18) 

 

Let r = s = t = u = 1 in the matrices above, and we get the trio in table 30 below. 

 

  0 1 2

1 2 1

1 2 1

1 2 1

1 1

1 1
1  

 
   
      

 

T T T  

 

Table 31: The matrices in (1.18) with r = s = t = u = 1 

 

Although it may seem, at the moment, a bit of a long shot, note that the rows of a Tn matrix in table 31 

correspond to the nth row of Pascal’s triangle (P). 

 
0          1         

1         1  1        

2        1  2  1       

3       1  3  3  1      

4      1  4  6  4  1     

5     1  5  10  10  5  1    

6    1  6  15  20  15  6  1   

7   1  7  21  35  35  21  7  1  

8  …  …  …  …  …  …  …  …  … 

 

Table 32: The first few rows of Pascal’s triangle (P) 

 

This gives us a start on deriving a 4 x 4 matrix that has a cubic term in each corner and thus generates the 

sequence S3.  Note that dots in the following matrices represent undefined elements. 

 

https://oeis.org/A078469
https://oeis.org/A005668
https://oeis.org/A005668
https://oeis.org/A015451
http://en.wikipedia.org/wiki/Pascal%27s_triangle
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3 3 3 3 3 2 2 3

2 2 2 2

2 2 2 2

3 3 3 3 3 2 2 3

3 3

) )

3 3

)

t u t u t t u tu u

rt su rt su
ii iii

r t s u r t s u

r s r s r r s rs s

i

     
     
       
     
     
     

  

 

Table 33: Filling in the blanks of the 4 x 4 

 

In ii a pattern from T2 is extrapolated to fill in the sides. In iii, the third row of Pascal’s triangle (1,3,3,1) 

provides the scalars. 

 

Now, to test out this tentative pattern, set r, s, t, u = 1, 2, 3, 4 and square the matrix.  

 
2

27 108 144 64 2197 3300 4656 8000

9 0 0 32 275 1164 1680 832

3 0 0 16 97 420 624 320

1 6 12 8 125 156 240 512

   
   
   
   
   
   

 

 
The cube roots of the corner values are 5, 8, 13 and 20, the result for those same r, s, t, u when squaring T1. 

However, a closer look shows that the edge patterns no longer conform to the ii form. Also, as this test 

matrix is taken to powers > 2, the corners no longer have integer cube roots. So the next step is to find 

general expressions for the interior terms. 

 

For this purpose, iii is fitted with e, f, g and h in [2,2], [2,3], [3,2] and [3,3] as symbols to be solved for. 

This matrix squared is in table 34 below. 

 
2 3 32 3 5 2 2 2 3 4 2 2 2

3 2 5 2 2 2 2 2 4 2 3 2 3 2 2 3 4 2 2 2

3 2 2 4 2 2 2 3 2 3 2 2 2 4 2 2

3

( ) (3 3 3 3 3 3 3 3

3 3 3 3

3 3 3 3

)r su t u et u gtu rs u t u ft u htu

r su rt ert fr t r s u rt u e fg rs u rt u ef fh rt u s u esu fs u

r s u r t grt hr t

ru t u s t

r s u r t u eg gh r t u rs u fg h r

     

         

 

 

        
3 5 2 2

3 2 23 3 2 34 2 2 3 2 5 2 2

3 3 3 3 3 3 3( ( )3)

tu s u gsu hs u

r t u r s er s grr s s r tt ruu rs fr s s shr 

  

     

 
 
 
 
 
 

 

 

Table 34: iii, with e, f, g and h in its interior, squared 

 

Note that [2,1] and [2,4] both contain just the two unknowns, e and f. Referencing the iii pattern in table 

33, [2,1] = (ru + t2)2  r(s + t) and [2,4] = u2(s + t)2  (ru + s2). This give the simultaneous equations: 

 

  
2

3 2 5 2 2 2
( )r su rt ert fr t ru t r s t        (1.19) 

    22 3 4 2 2 2 2 2
rt u s u esu fs u u s t ru s        (1.20) 

 

To solve, say, (1.19) for e in terms of f, then substituting into (1.20) gives f = u(ru + 2st). Plug that back 

into (1.19) for e = t(2ru + st). Then [3,1] and [3,4] are likewise manipulated to find the entries for c and d. 

This gives T3 in (1.21) below. 
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3 2 2 3

2 2

2 2

3 2 2 3

3 3

(2 ) ( 2 )

( 2 ) (2 )

3 3

t t u tu u

rt t ru st u ru st su

r t r ru st s ru st s u

r r s rs s

 


 

 
 
 
 
 
 

3
T   (1.21) 

 

T3 is the fourth member of this young family. Which of the T2 properties does it inherit? For one, the proof 

on page 10 shows that T2, operating on a quadratic equation’s coefficients, doesn’t change the core value 

of the discriminant D2 = (b2 – 4ac), but increases it by a square factor. I.e., D2  (ru – st)2. For a cubic 

equation with coefficients a, b, c and d, the discriminant is  

 

 
2 2 3 3 2 2

3 18 –  27 –  4 –  4D abcd a d ac b d b c   (1.22) 

 

Multiply the cubic polynomial’s coefficient matrix (a b c d) by T3 and put the new coefficients into the 

general cubic formula: the discriminant now factors to D3  (ru – st)6. 

 

Recall that T2 was discovered in the course of finding methods for pairing quadratic roots on hyperbolic 

curves. Are there T3 analogs that match cubic roots on 3D surfaces or curves? Do any nontrival forms of 

T3, numerical or symbolic, form a finite group? 

 

Another question is, how many signage patterns can T3 assume and still retain its distinctive properties? 

Inverses of nonsingular numerical forms give two examples. 

 
1 1

27 135 225 125 8 60 150 125 125 225 135 27 1 9 27 27

9 48 85 50 4 32 85 75 50 85 48 9 2 17 48 45
,

3 17 32 20 2 17 48 45 20 32 17 3 4 32 85 75

1 6 12 8 1 9 27 27 8 12 6 1 8 60 150 125

 

   

   
 

   

   

       
       
       
       
       
       

  

 

So far r = s = t = u = 1 in Tn gives a matrix with the nth row of Pascal’s triangle in every row. A logical 

expectation is that this pattern will hold for higher n. To state this expectation more formally, the binomial 

coefficient formula comes into play. 

 

 
!

!( )!

n

k

n n
C

k k n k
 



 
 
 

  (1.23) 

 

This formula locates the kth term in the nth row of Pascal’s triangle. Thus the (n+1)2 with r = s = t = u = 1 

will, if this pattern holds, be of the form 

 

 

0 1 1

0 1 1

0 1 1

0 1 1

n n n n

n n

n n n n

n n

n n n n

n n

n n n n

n n

C C C C

C C C C

C C C C

C C C C









 
 
 
 
 
 
 
 

  (1.24) 

http://mathworld.wolfram.com/BinomialCoefficient.html
http://mathworld.wolfram.com/BinomialCoefficient.html
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The pattern in (1.24) is of use in finding larger Tn. Another useful generalization expresses the perimeter 

of Tn using binomial coefficients as well. 

 

 

1 2 2 2 2 1

1 2 2 1

1 1

2 2 2 2

2 2 2 2

1 1

1 2 2 2 2 1

1 2 2 1

n n n n n n n n n n

n n

n n

n n

n n

n n

n n n n n n n n n n

n n

t C t u C t u C t u C tu u

rt su

r t s u

r t s u

r t s u

r C r s C r s C r s C rs s

   

 

 

 

 

 

   

 

   

   

 
 
 
 
 
 
 
 
 
 
 

  (1.25) 

 

These two generalizations are applied in the effort to fill in T4. 

 

 

4 3 2 2 3 4 4 3 2 2 3 4

3 3 3 2 2 3

2 2 2 2 2 2 2 2

3 3 3 2 2

4 3 2 2 3 4

4 6 4 4 6 4

(3 ) (3 3 ) ( 3 )

) ) (2 2 ) (2 2 )

( 3 ) (3 3 ) (3

4 6 4

t t u t u tu u t t u t u tu u

rt su rt t ru st tu ru st u ru st su

i iir t s u r t rt ru st a su ru st s u

r t s u r t r ru st rs ru st s ru

r r s r s rs s

  

 

  

 
 
 
 
 
 
 
 

3

4 3 2 2 3 4

)

4 6 4

st s u

r r s r s rs s

 
 
 
 
 
 
 
 

  

 

Table 35: Steps in the process of finding T4 

 

In i in table 35, end columns take the pattern of diminishing powers and the 4th row of Pascal’s triangle 

provides scalars for the top and bottom rows. With nine unknowns now in the interior of i, this 5 x 5 version 

won’t yield to simultaneous equations as readily as did the 4 x 4 T3. Another approach is to extrapolate, fill 

in all but the center point based on trends seen in the smaller matrices. Thus, the central elements in ii, save 

a, are educated guesses. 

 

As a test, square ii in table 35 and call the result (not shown) M4. Now an equation such as, say, M4[3,1] = 

sqrt(M4[1,1])  sqrt(M4[5,1]) is solved for a in terms of r, s, t and u. The answer is a = r2u2 + 4rstu + s2t2. This, 

as in (1.26), completes the matrix. 

 

 

4 3 2 2 3 4

3 2 2 3

2 2 2 2 2 2 2 2

3 2 2 3

4 3 2 2 3 4

4

4 6 4

(3 ) (3 3 ) ( 3 )

(2 2 ) 4 (2 2 )

( 3 ) (3 3 ) (3 )

4 6 4

t t u t u tu u

rt t ru st tu ru st u ru st su

r t rt ru st r u rstu s t su ru st s u

r t r ru st rs ru st s ru st s u

r r s r s rs s

  

   

  



 
 
 
 
 
 
 
 

T   (1.26) 

 

The central element in (1.26), introduces a novel term into the patterns. Until r2u2 + 4rstu + s2t2 appeared 

in T4[3,3], it looked as if a general pattern for Tn might soon become evident. But it now seems likely that 

ever more elaborate combinations of r, s, t and u will emerge in the interiors of these matrices as they grow 

larger. So surely a few more, and maybe even a lot more of these Tn will need to be seen before we can, 

using this empirical approach, get a sense of what to expect and figure out how to formalize it. 
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To generate more of these matrices becomes in some ways more difficult as they grow larger, yet somewhat 

easier in other ways as the edge and other patterns become more familiar. E.g., 

 

 

5 4 3 2 2 3 4

4 3 2 2 3 4

3 2 2 2 2 3

2 3 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 25

5 10 10 5

(4 ) (6 4 ) (4 6 ) ( 4 )

(3 2 ) (3 6 ) ( 6 3 ) (2 3 )

(2 3 ) ( 6 3 ) (3 6

n

t t u t u t u tu u

t r t ru st t u ru st tu ru st u ru st su

t r rt ru st t r u rstu s t u r u rstu s t su ru st s u

t r r t ru st r r u rstu s t s r u rstu s t

   

     

    
T

2 3 2

4 3 2 2 3 4

5 4 3 2 2 3 4

) (3 2 )

( 4 ) (4 6 ) (6 4 ) (4 )

5 10 10 5
n

s u ru st s u

tr r ru st r s ru st rs ru st s ru st s u

r r s r s r s rs s



   

 
 
 
 
 
 
 
 
 

  (1.27) 

 
T5 helps to clarify that numbers in rows 2 and n are predictable as ‘Pascal partitions’ of the number directly 

above/below. I.e., 
1 1

1

n n n

k k k
C C C

 


  . This gives the horizontal sides of the second perimeter in figure 6 

below. (The vertical sides of the second perimeter (columns 2 and n) are even easier to predict, but with 

several options for their notation, they’re left blank.) 

 

 

1 2 2 2 2 1

1 2 2 1

1 2 1 1 3 1 1 3 1 1 2 1 1 1

1 0 2 1 1 2 1

2 2 2 2

2 2 2 2

1 2

( ) ( ) ( ) ( )

n n n n n n n n n n

n n

n n n n n n n n n n n n n n

n n n n

n n

n n

n n

t C t u C t u C t u C tu u

rt t C ru C st t u C ru C st tu C ru C st u C ru C st su

r t s u

r t s u

r t r

   

 

             

  

 

 

 

   

   

1 1 3 1 1 3 1 1 2 1 1 1

0 1 1 2 1 2 1

1 2 2 2 2 1

1 2 2 1

( ) ( ) ( ) ( )
n n n n n n n n n n n n

n n n n

n n n n n n n n n n

n n

C ru C st r s C ru C st rs C ru C st s C ru C st s u

r C r s C r s C r s C rs s

           

  

   

 

   

   

 
 
 
 
 
 
 
 
 
 
 

  

 

 Figure 6: A tentative description of the second perimeter’s top and bottom rows.  

 

While a general formula may eventually be derived empirically, a derivation based on logical principles, 

one that provides a theoretical understanding of how the elements of Tn relate to one another in ways that 

don’t change under exponentiation, seems the ultimate goal… 

 

 

 

Problems: 

 

Find the general form of T6, the 7 x 7 matrix that generates S6. 

 
Find the general form of Tn, the (n+1)2 matrix that generates Sn.  
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Addenda 
 

Myriad other OEIS sequences (or candidates) can be found here… e.g., apply 
2

,
k

T  (k an index rather than 

exponent) = 1,2,3…, to x2 – x – 1 coefficients, and clear fractions. Table 1 shows results for k = 1..20.  

 
k =   a  b  c  a+b+c 

20   100  120  –89  131 

19   361  437  –319  479 

18   81  99  –71  109 

17   289  357  –251  395 

16   64  80  –55  89 

15   225  285  –191  319 

14   49  63  –41  71 

13   169  221  –139  251 

12   36  48  –29  55 

11   121  165  –95  191 

10   25  35  –19  41 

9   81  117  –59  139 

8   16  24  –11  29 

7   49  77  –31  95 

6   9  15  –5  19 

5   25  45  –11  59 

4   4  8  –1  11 

3   9  21  1  31 

2   1  3  1  5 

1   1  5  5  11 

 

Table 1: 
2

k
T applied to the coefficients of x2 – x – 1 

 

The a column terms are A168077. (Note that this sequence is also generated as the square of an in A026741; 

we’ll encounter this latter sequence again.) The b column in table 20 is A171621; dividing every 4th term 

by 4 gives A061037.The c column terms 5,1,1,–1,–11,–5,–31… are A229526. Note that the sum of a, b and 

c in a row n is the c coefficient in row n + 4 with the sign reversed (A229525). 

 

In table 2, k of 
2

k
T  takes fractional values; Coefficients are again (1 –1 –1); fractions in the table are cleared. 

 
k =   a  b  c  a+b+c 

1/13   13  689  8777  9479 
1/12   6  294  3451  3751 
1/11   11  495  5315  5821 
1/10   5  205  1996  2206 
1/9   9  333  2909  3251 
1/8   4  132  1021  1157 
1/7   7  203  1367  1577 
1/6   3  75  430  508 
1/5   5  105  497  607 
1/4   2  34  127  163 
1/3   3  39  107  149 
1/2   1  9  16  25 

1   1  5  5  11 

 

Table 2: 
2

k
T applied to x2 – x – 1 coefficients with fractional arguments for k 

http://oeis.org/
http://oeis.org/A168077
https://oeis.org/A026741
http://oeis.org/A171621
https://oeis.org/A061037
https://oeis.org/A229526
https://oeis.org/A229525
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The a coefficients in table 2 (A026741) are the square roots of a coefficients in table 1. It’s interesting that 

fractional arguments in k should have that effect. Such other mathematical relationships as may exist 

between the coefficients in these two tables are not so obvious… 

 

One definition of a Lucas number (Ln) is Ln = Fn–1 + Fn+1. Here is a Lucas-Fibonacci identity that popped 

out in the course of the exploration. If this identity in fact new, what will it take to prove it? 

 

Ln Fj + Fj–n (–1)n+1 = Fj+n 
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