A Problem Regarding a System of Matrices

by Russell Walsmith ixitol@yahoo.com

The matrix T_2 taken to progressively higher powers (and the elements read in the same order) generates the sequence S = r, s, t, u, rs + rt, $ru + s^2$, $ru + t^2$, su + tu...

$$T_2 = \begin{pmatrix} t & u \\ r & s \end{pmatrix} \tag{1.1}$$

 T_3 generates squares of S in its corners: r^2 , s^2 , t^2 , u^2 , $(rs + rt)^2$, $(ru + s^2)^2$, $(ru + t^2)^2$, $(su + tu)^2$... It also has <u>certain interesting effects</u> on the roots and discriminants of quadratic equations with coefficients $(a \ b \ c)$.

$$T_{3} = \begin{pmatrix} t^{2} & 2tu & u^{2} \\ rt & ru + st & su \\ r^{2} & 2rs & s^{2} \end{pmatrix}$$
 (1.2)

 T_4^n (n = 1,2,3...) generates $S^3 = r^3$, s^3 , t^3 , u^3 , $(rs + rt)^3$, $(ru + s^2)^3$, $(ru + t^2)^3$, $(su + tu)^3$...

$$T_{4} = \begin{pmatrix} t^{3} & 3t^{2}u & 3tu^{2} & u^{3} \\ rt^{2} & t(2ru+st) & u(ru+2st) & su^{2} \\ r^{2}t & r(ru+2st) & s(2ru+st) & s^{2}u \\ r^{3} & 3r^{2}s & 3rs^{2} & s^{3} \end{pmatrix}$$
(1.3)

 T_5^n generates S^4 :

$$T_{5} = \begin{pmatrix} t^{4} & 4t^{3}u & 6t^{2}u^{2} & 4tu^{3} & u^{4} \\ rt^{3} & t^{2}(3ru+st) & tu(3ru+3st) & u^{2}(ru+3st) & su^{3} \\ r^{2}t^{2} & rt(2ru+2st) & r^{2}u^{2}+4rstu+s^{2}t^{2} & su(2ru+2st) & s^{2}u^{2} \\ r^{3}t & r^{2}(ru+3st) & rs(3ru+3st) & s^{2}(3ru+st) & s^{3}u \\ r^{4} & 4r^{3}s & 6r^{2}s^{2} & 4rs^{3} & s^{4} \end{pmatrix}$$

$$(1.4)$$

Problems:

Find a T_6 that generates S^5 (i.e., find the next term in this sequence of matrices).

Find the general form of the $(n+1)^2$ matrix that generates S^n .