login
Numbers m such that there are precisely 11 groups of order m.
21

%I #41 May 13 2023 23:50:53

%S 140,364,380,460,476,572,748,819,860,940,988,1036,1148,1180,1196,1276,

%T 1292,1340,1484,1564,1580,1612,1628,1660,1708,1804,1953,2044,2060,

%U 2108,2140,2204,2236,2332,2444,2492,2540,2668,2684,2716,2780,2812,2828,2924,3052,3068,3116,3196,3212

%N Numbers m such that there are precisely 11 groups of order m.

%H Muniru A Asiru, <a href="/A249554/b249554.txt">Table of n, a(n) for n = 1..929</a>

%H <a href="/index/Gre#groups">Index entries for sequences related to groups</a>

%p with(GroupTheory): select(n->NumGroups(n)=11,[$1..4000]); # _Muniru A Asiru_, Mar 28 2018

%t Select[Range[10^4], FiniteGroupCount[#] == 11 &] (* A current limit in Mathematica is such that some orders >2047 may not be evaluated.*)(* _Robert Price_, May 24 2019 *)

%o (GAP) A249554 := Filtered([1..2015], n -> NumberSmallGroups(n) = 11); # _Muniru A Asiru_, Oct 16 2017

%Y Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), this sequence (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Nov 01 2014

%E More terms added by _Muniru A Asiru_, Oct 23 2017

%E Incorrect b-file shortened by _Andrew Howroyd_, Jan 28 2022