%I #30 May 13 2023 23:50:35
%S 510,690,870,910,1122,1190,1330,1395,1410,1590,1610,1770,1914,2002,
%T 2210,2346,2470,2490,2590,2618,2670,2706,2745,2926,2958,2990,3094,
%U 3102,3210,3230,3290,3390,3458,3465,3498,3710,3770,3894,3910,4002,4110,4130,4182,4186,4370,4470
%N Numbers m such that there are precisely 8 groups of order m.
%H Muniru A Asiru, <a href="/A249551/b249551.txt">Table of n, a(n) for n = 1..1064</a>
%H H. U. Besche, B. Eick and E. A. O'Brien, <a href="http://www.icm.tu-bs.de/ag_algebra/software/small/number.html">Numbers of isomorphism types of finite groups of given order</a>
%H <a href="/index/Gre#groups">Index entries for sequences related to groups</a>
%t Select[Range[10^4], FiniteGroupCount[#] == 8 &] (* A current limit in Mathematica is such that some orders >2047 may not be evaluated.*) (* _Robert Price_, May 24 2019 *)
%o (GAP) A249551 := Filtered([1..2015], n -> NumberSmallGroups(n) = 8); # _Muniru A Asiru_, Oct 18 2017
%Y Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), this sequence (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).
%K nonn
%O 1,1
%A _N. J. A. Sloane_, Nov 01 2014
%E a(15)-a(16) from _Muniru A Asiru_, Oct 18 2017
%E More terms from _Michael De Vlieger_, Oct 18 2017
%E Missing terms added by _Andrey Zabolotskiy_, Oct 27 2017