This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A249543 Square array T(m,n) of integer partitions with m addends n+1, read by antidiagonals. 4
 1, 2, 3, 4, 9, 7, 6, 20, 26, 15, 10, 40, 72, 68, 30, 14, 75, 171, 220, 159, 56, 21, 133, 379, 614, 603, 352, 101, 29, 229, 786, 1559, 1928, 1525, 732, 176, 41, 383, 1568, 3700, 5564, 5534, 3618, 1465, 297 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS T(m,n) is the integer partition with m times the addend n+1 (and no other non-one addends) given as index number of A194602. The entries in the array A249544 are also in the sequence A194602. This array T contains the index numbers of A194602 corresponding to the entries of that array: A194602(T(m,n)) = A249544(m,n). Array begins:    n    1    2    3    4    5    6    7   8   9 m 1       1    2    4    6   10   14   21  29  41 2       3    9   20   40   75  133  229 383 3       7   26   72  171  379  786 1568 4      15   68  220  614 1559 3700 5      30  159  603 1928 5564 6      56  352 1525 5534 7     101  732 3618 8     176 1465 9     297 Row 1 is A000065, column 1 is A058695 (both with shifted index). LINKS Tilman Piesk, First 113 rows of the triangle, flattened Tilman Piesk, Table for A194602 Li-yao Xia, Identities for A194602 FORMULA A194602(T(m,n)) =  A249544(m,n). T(1,n) = A000065(n+1) = p(n+1) - 1. T(2,n) = p(2*(n+1)) - 2. T(3,n) = p(3*(n+1)) - floor((n+1)/2) - 3. T(m,1) = A058695(m-1) = p(2n-1). p is the sequence of partition numbers A000041. (See "Identities for A194602" link.) EXAMPLE T(5,2) = 159. A194602(159) = 14043. (So A249544(5,2) = 14043.) 14043 in binary is 11011011011011. That corresponds to the integer partition with 5 times the addend 3. (See row 159 in "Table for A194602" link.) CROSSREFS Cf. A194602, A249544, A000065, A058695, A000041. Sequence in context: A060866 A064478 A111798 * A307404 A307405 A115305 Adjacent sequences:  A249540 A249541 A249542 * A249544 A249545 A249546 KEYWORD nonn,tabl AUTHOR Tilman Piesk, Oct 31 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 23 03:00 EDT 2019. Contains 325230 sequences. (Running on oeis4.)