login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A249513 Expansion of -(4*x*sqrt(4*x^2+1)+8*x^2+1)/((2*x^2-1)*sqrt(4*x^2+1) +4*x^3+x). 0
1, 5, 13, 25, 51, 125, 295, 625, 1345, 3125, 7173, 15625, 34269, 78125, 177153, 390625, 864315, 1953125, 4401655, 9765625, 21706831, 48828125, 109676283, 244140625, 544031251, 1220703125, 2736797215, 6103515625, 13620096675, 30517578125, 68346531855 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..30.

FORMULA

a(n) = sum(k = 0..n, 4^(n-k)*binomial((n+1)/2,n-k)).

a(n) ~ 5^((n+1)/2). - Vaclav Kotesovec, Oct 31 2014

a(n) = 5^((n+1)/2) if n is odd else a(n) = (4^n*binomial(n/2+1/2, n)* hypergeometric([1, -n], [-n/2+3/2], -1/4)). # Peter Luschny, Oct 31 2014

MATHEMATICA

CoefficientList[Series[-(4 x Sqrt[4 x^2 + 1] + 8 x^2 + 1)/((2 x^2 - 1) Sqrt[4 x^2 + 1] + 4 x^3 + x), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 31 2014 *)

PROG

(Maxima)

a(n) := sum(4^(n-k)*binomial((n+1)/2, n-k), k, 0, n).

(Sage)

def a(n):

    if is_odd(n): return 5^(n//2+1)

    return (4^n*binomial(n/2+1/2, n)*hypergeometric([1, -n], [-n/2 +3/2], -1/4)).simplify_hypergeometric()

[a(n) for n in range(31)] # Peter Luschny, Oct 31 2014

CROSSREFS

Cf. A000351.

Sequence in context: A147427 A147408 A241657 * A147090 A097117 A146140

Adjacent sequences:  A249510 A249511 A249512 * A249514 A249515 A249516

KEYWORD

nonn

AUTHOR

Vladimir Kruchinin, Oct 31 2014

EXTENSIONS

More terms from Vincenzo Librandi, Oct 31 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 13 17:34 EST 2019. Contains 329106 sequences. (Running on oeis4.)