login
A249492
Decimal expansion of rho(a,b), the cross-correlation coefficient of two sides of a random Gaussian triangle (in two dimensions).
3
2, 3, 2, 5, 5, 9, 3, 4, 6, 5, 4, 3, 1, 7, 8, 2, 3, 4, 4, 7, 3, 0, 9, 0, 3, 5, 9, 7, 5, 0, 3, 3, 3, 8, 9, 9, 3, 1, 0, 4, 3, 5, 0, 1, 5, 4, 3, 5, 0, 2, 0, 4, 0, 9, 8, 8, 5, 9, 9, 4, 2, 1, 0, 5, 9, 7, 7, 6, 1, 7, 9, 9, 9, 1, 4, 9, 8, 0, 9, 1, 9, 1, 7, 5, 9, 5, 4, 5, 1, 2, 5, 4, 6, 9, 0, 8, 3, 8, 5, 2, 7, 8, 4
OFFSET
0,1
COMMENTS
Coordinates are independent normally distributed random variables with mean 0 and variance 1.
LINKS
Steven R. Finch, Random Triangles, January 21, 2010. [Cached copy, with permission of the author]
Eric Weisstein MathWorld, Gaussian Triangle Picking
FORMULA
rho = (p - Pi)/(4 - Pi), where p is A249491, the expected value of the product of two sides.
EXAMPLE
0.23255934654317823447309035975033389931043501543502...
MAPLE
Re(evalf((4*EllipticE(1/2) - sqrt(3)*EllipticK(I/sqrt(3)) - Pi)/(4 - Pi), 120)); # Vaclav Kotesovec, Apr 22 2015
MATHEMATICA
p = 4*EllipticE[1/4] - Sqrt[3]*EllipticK[-1/3]; rho = (p - Pi)/(4 - Pi); RealDigits[rho, 10, 103] // First
RealDigits[(3 EllipticE[8/9] - Pi)/(4 - Pi), 10, 103][[1]] (* Jan Mangaldan, Nov 26 2020 *)
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved