login
A249489
a(n) = [x^n/n!] Sum_{k=0..n} cosh(k*x)^k.
7
1, 0, 9, 0, 12070, 0, 126447741, 0, 5100496997940, 0, 562605048135059545, 0, 138523311740417986721274, 0, 66543520389763227261554370645, 0, 56664734898911130799849838608991176, 0, 79610326854782816434044397510470501877041
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} Sum_{j=0..k} binomial(k, j) * k^n * (k-2*j)^n / 2^k. [Explicitly stating Vaclav's formula in Mma program - Paul D. Hanna, Oct 15 2018]
If n is even, then a(n) ~ c * (1-2*r)^n * n^(2*n) / (2^n * exp(n) * (r*(1-r))^(n/2)), where r = 0.0832217201995176507819192648878903254298041... is the root of the equation (r/(1-r))^(1-2*r) = exp(-2), and c = 2.09233700490262732901066903251002074102409436600891921766318742438...
MATHEMATICA
Flatten[{1, Table[Sum[Sum[Binomial[k, j] * k^n*(k-2*j)^n / 2^k, {j, 0, k}], {k, 0, n}], {n, 1, 20}]}]
PROG
(PARI) {a(n)=n!*polcoeff(sum(k=0, n, cosh(k*x+x*O(x^n))^k), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = sum(k=0, n, sum(j=0, k, binomial(k, j) * k^n*(k-2*j)^n / 2^k ))}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Oct 15 2018, using Vaclav's formula.
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 30 2014
EXTENSIONS
Name clarified by Paul D. Hanna, Oct 15 2018
STATUS
approved