login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A249347 The exponent of the highest power of 7 dividing the product of the elements on the n-th row of Pascal's triangle. 6
0, 0, 0, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0, 12, 10, 8, 6, 4, 2, 0, 18, 15, 12, 9, 6, 3, 0, 24, 20, 16, 12, 8, 4, 0, 30, 25, 20, 15, 10, 5, 0, 36, 30, 24, 18, 12, 6, 0, 90, 82, 74, 66, 58, 50, 42, 89, 80, 71, 62, 53, 44, 35, 88, 78, 68, 58, 48, 38, 28, 87, 76, 65, 54, 43, 32, 21, 86, 74, 62, 50, 38, 26, 14, 85, 72, 59, 46, 33, 20, 7, 84, 70, 56, 42, 28, 14, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,8

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..2400

Jeffrey C. Lagarias, Harsh Mehta, Products of binomial coefficients and unreduced Farey fractions, arXiv:1409.4145 [math.NT], 2014.

FORMULA

a(n) = A214411(A001142(n)).

a(n) = Sum_{k=0..n} A214411(binomial(n,k)).

PROG

(PARI)

allocatemem(234567890);

A249347(n) = sum(k=0, n, valuation(binomial(n, k), 7));

for(n=0, 2400, write("b249347.txt", n, " ", A249347(n)));

(Scheme, two alternative implementations)

(define (A249347 n) (A214411 (A001142 n)))

(define (A249347 n) (add (lambda (n) (A214411 (A007318 n))) (A000217 n) (A000096 n)))

(define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (+ 1 i) (+ res (intfun i)))))))

CROSSREFS

Row 4 of array A249421.

Cf. A001142, A007318, A214411, A187059, A249343, A249345.

Sequence in context: A023448 A307337 A031055 * A284805 A225660 A031056

Adjacent sequences:  A249344 A249345 A249346 * A249348 A249349 A249350

KEYWORD

nonn

AUTHOR

Antti Karttunen, Oct 28 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 03:40 EDT 2020. Contains 334815 sequences. (Running on oeis4.)