login
A249319
T(n,k)=Number of length n+6 0..k arrays with no seven consecutive terms having six times any element equal to the sum of the remaining six
13
126, 1792, 250, 14336, 4586, 496, 68712, 51200, 11874, 984, 249088, 305908, 183516, 30876, 1952, 739284, 1340288, 1364252, 658388, 80354, 3872, 1898582, 4669434, 7224220, 6089486, 2362656, 208876, 7680, 4361056, 13824950, 29549686, 38980312
OFFSET
1,1
COMMENTS
Table starts
...126....1792......14336.......68712.......249088.........739284
...250....4586......51200......305908......1340288........4669434
...496...11874.....183516.....1364252......7224220.......29549686
...984...30876.....658388.....6089486.....38980312......187202568
..1952...80354....2362656....27195324....210466508.....1186724138
..3872..208876....8479940...121490228...1136802444.....7525617064
..7680..541624...30441964...542821804...6141387290....47731565832
.15234.1400008..109315912..2425448642..33179587514...302750656716
.30218.3618986..392540302.10837998920.179264996934..1920348850344
.59940.9363890.1409749660.48432447004.968578232316.12181094726996
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5) +a(n-6)
Empirical for row n:
n=1: [linear recurrence of order 19; also a polynomial of degree 7 plus a quasipolynomial of degree 0 with period 60]
EXAMPLE
Some solutions for n=3 k=4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..0....0....1....1....1....0....0....1....1....0....1....1....1....1....0....0
..3....2....3....2....1....3....2....0....0....1....2....2....3....0....3....0
..2....3....0....0....2....2....3....3....3....0....4....2....3....2....3....0
..1....2....2....2....1....2....2....4....1....3....3....3....2....4....4....2
..3....1....0....3....1....3....3....2....3....4....2....1....1....2....4....4
..2....4....2....4....4....1....0....3....4....2....0....0....0....4....4....2
..0....0....3....4....0....1....3....4....4....1....4....0....1....2....2....4
..0....0....3....0....1....1....2....2....0....1....2....0....3....3....2....0
CROSSREFS
Column 1 is A249190
Column 2 is A249191
Sequence in context: A109146 A249197 A249212 * A249198 A249213 A249320
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Oct 25 2014
STATUS
approved