%I #11 Oct 19 2018 16:00:12
%S 1,13,14,170,184,2224,2408,29096,31504,380656,412160,4980032,5392192,
%T 65152576,70544768,852375680,922920448,11151428608,12074349056,
%U 145891492352,157965841408,1908663749632,2066629591040,24970594586624,27037224177664,326684359217152
%N Expansion of x*(1+13*x-12*x^3)/(1-14*x^2+12*x^4).
%C It seems that this is also the first row of the spectral array W(sqrt(37)-5).
%C It also seems that, for all k>0, the first row of W(sqrt(k^2+1)-k+1) has a generating function of the form x*(1+(2*k+1)*x-2*k*x^3)/(1-(2*k+2)*x^2+2*k*x^4).
%H Colin Barker, <a href="/A249313/b249313.txt">Table of n, a(n) for n = 1..1000</a>
%H A. Fraenkel and C. Kimberling, <a href="http://dx.doi.org/10.1016/0012-365X(94)90259-3">Generalized Wythoff arrays, shuffles and interspersions</a>, Discrete Mathematics 126 (1994) 137-149.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,14,0,-12).
%t CoefficientList[Series[x (1+13x-12x^3)/(1-14x^2+12x^4),{x,0,30}],x] (* or *) LinearRecurrence[{0,14,0,-12},{1,13,14,170},30] (* _Harvey P. Dale_, Oct 19 2018 *)
%o (PARI) Vec(x*(1+13*x-12*x^3)/(1-14*x^2+12*x^4) + O(x^100))
%Y Cf. A007068 (k=1), A022165 (k=2), A249310 (k=3), A249311 (k=4), A249312 (k=5).
%K nonn,easy
%O 1,2
%A _Colin Barker_, Oct 25 2014