login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A249312 Expansion of x*(1+11*x-10*x^3)/(1-12*x^2+10*x^4). 4
1, 11, 12, 122, 134, 1354, 1488, 15028, 16516, 166796, 183312, 1851272, 2034584, 20547304, 22581888, 228054928, 250636816, 2531186096, 2781822912, 28093683872, 30875506784, 311812345504, 342687852288, 3460811307328, 3803499159616, 38411612232896 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

It seems that this is also the first row of the spectral array W(sqrt(26)-4).

It also seems that, for all k>0, the first row of W(sqrt(k^2+1)-k+1) has a generating function of the form x*(1+(2*k+1)*x-2*k*x^3)/(1-(2*k+2)*x^2+2*k*x^4).

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

A. Fraenkel and C. Kimberling, Generalized Wythoff arrays, shuffles and interspersions, Discrete Mathematics 126 (1994) 137-149.

Index entries for linear recurrences with constant coefficients, signature (0,12,0,-10).

FORMULA

a(1)=1, a(2)=11, a(3)=12, a(4)=122, a(n)=12*a(n-2)-10*a(n-4). - Harvey P. Dale, Feb 02 2015

MATHEMATICA

LinearRecurrence[{0, 12, 0, -10}, {1, 11, 12, 122}, 40] (* Harvey P. Dale, Feb 02 2015 *)

PROG

(PARI) Vec(x*(1+11*x-10*x^3)/(1-12*x^2+10*x^4) + O(x^100))

CROSSREFS

Cf. A007068 (k=1), A022165 (k=2), A249310 (k=3), A249311 (k=4), A249313 (k=6).

Sequence in context: A094624 A108218 A038326 * A041059 A041260 A109665

Adjacent sequences:  A249309 A249310 A249311 * A249313 A249314 A249315

KEYWORD

nonn,easy

AUTHOR

Colin Barker, Oct 25 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 09:46 EST 2019. Contains 329261 sequences. (Running on oeis4.)