|
|
A249305
|
|
Primes p such that 2^p - p^2 is not squarefree.
|
|
0
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Sequence is infinite, containing all primes equal to 2, 4, 89, or 115 mod 147. - Charles R Greathouse IV, Oct 28 2014
|
|
LINKS
|
Table of n, a(n) for n=1..6.
|
|
FORMULA
|
a(n) < (21 + e)n log n for any e > 0 and all large enough n. - Charles R Greathouse IV, Oct 28 2014
|
|
EXAMPLE
|
2 is in this sequence because 2 is prime and 2^2 - 2^2 = 0 is not squarefree.
|
|
PROG
|
(MAGMA) [n: n in [3..269] | IsPrime(n) and not IsSquarefree(2^n - n^2)];
(PARI) is(n)=isprime(n) && !issquarefree(2^n-n^2) \\ Charles R Greathouse IV, Oct 28 2014
|
|
CROSSREFS
|
Cf. A005117, A024012.
Sequence in context: A139881 A161676 A235467 * A023302 A041967 A226768
Adjacent sequences: A249302 A249303 A249304 * A249306 A249307 A249308
|
|
KEYWORD
|
nonn,more,changed
|
|
AUTHOR
|
Juri-Stepan Gerasimov, Oct 25 2014
|
|
EXTENSIONS
|
a(5)-a(6) from Charles R Greathouse IV, Oct 28 2014
|
|
STATUS
|
approved
|
|
|
|