The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A249303 Triangular array:  row n gives the coefficients of the polynomial p(n,x) defined in Comments. 1
 1, 0, 1, -1, 2, -1, 1, 1, 0, -2, 3, 1, -4, 3, 1, 1, -2, -2, 4, 0, 3, -9, 6, 1, -1, 6, -9, 0, 5, -1, 3, 3, -15, 10, 1, 0, -4, 18, -24, 5, 6, 1, -8, 18, -6, -20, 15, 1, 1, -4, -4, 36, -49, 14, 7, 0, 5, -30, 60, -35, -21, 21, 1, -1, 10, -30, 20, 50, -84, 28, 8 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = 1 + (x - 1)/f(n-1,x), where f(0,x) = 1. Every row sum is 1.  The first column is purely periodic with period (1,0,-1,-1,0,1). Conjecture:  for n > 2, p(n,x) is irreducible if and only if n is a (prime - 2).  More generally, if c is arbitrary and f(n,x) = 1 + (x + c)/f(n-1,x), where f(x,0) = 1, then p(n,x) is irreducible if and only if n is a (prime - 2). LINKS Clark Kimberling, Rows 0..100, flattened EXAMPLE f(0,x) = 1/1, so that p(0,x) = 1 f(1,x) = x/1, so that p(1,x) = x; f(2,x) = (-1 + 2 x)/x, so that p(2,x) = -1 + 2 x. First 6 rows of the triangle of coefficients: ... 1 ... 0 ... 1 .. -1 ... 2 .. -1 ... 1 ... 1 ... 0 .. -2 ... 3 ... 1 .. -4 ... 3 ... 1 MATHEMATICA z = 20; f[n_, x_] := 1 + (x - 1)/f[n - 1, x]; f[0, x_] = 1; t = Table[Factor[f[n, x]], {n, 0, z}] u = Numerator[t] TableForm[Rest[Table[CoefficientList[u[[n]], x], {n, 0, z}]]] (* A249303 array *) v = Flatten[CoefficientList[u, x]] (* A249303 *) CROSSREFS Cf. A128100, A229057, A229074. Sequence in context: A281743 A118404 A089339 * A319081 A336931 A182662 Adjacent sequences:  A249300 A249301 A249302 * A249304 A249305 A249306 KEYWORD tabf,sign,easy AUTHOR Clark Kimberling, Oct 24 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 15 10:49 EDT 2021. Contains 342977 sequences. (Running on oeis4.)