login
Lexicographically earliest permutation of the nonnegative integers such that the parity of the first digit of a(n+1) equals that of a(n)'s last digit.
4

%I #19 Jan 02 2023 12:30:50

%S 0,2,4,6,8,20,21,1,3,5,7,9,10,22,23,11,12,24,25,13,14,26,27,15,16,28,

%T 29,17,18,40,41,19,30,42,43,31,32,44,45,33,34,46,47,35,36,48,49,37,38,

%U 60,61,39,50,62,63,51,52,64,65,53,54,66,67,55,56,68,69,57,58,80,81,59,70,82,83,71,72,84,85,73,74,86,87,75,76,88,89,77,78,200,201

%N Lexicographically earliest permutation of the nonnegative integers such that the parity of the first digit of a(n+1) equals that of a(n)'s last digit.

%C The inverse permutation is given in A249279. - _M. F. Hasler_, Oct 24 2014

%C A000030(a(n+1)) mod 2 = a(n) mod 2. - _Reinhard Zumkeller_, Oct 27 2014

%H Reinhard Zumkeller, <a href="/A249278/b249278.txt">Table of n, a(n) for n = 0..10000</a>

%H Éric Angelini, <a href="http://list.seqfan.eu/oldermail/seqfan/2014-October/013865.html">Commas squeezed between two same parity digits</a>, SeqFan mailing list, Oct 24 2014

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%o (PARI) a(n,a=0,u=0)=for(n=1,n,for(k=0,9e9,!bittest(u,k)&&k\10^(#Str(k)-1)==Mod(a,2)&&!print1(a=k",")&&break);u+=1<<a);a \\ _M. F. Hasler_, Oct 24 2014

%o (Haskell)

%o a249278 n = a249278_list !! n

%o a249278_list = 0 : f 0 [1..] where

%o f u vs = g vs where

%o g (x:xs) = if (a000030 x) `mod` 2 == u `mod` 2

%o then x : f x (delete x vs) else g xs

%o -- _Reinhard Zumkeller_, Oct 27 2014

%Y Cf. A000030, A249494 (variant starting with 1).

%K nonn,base

%O 0,2

%A _Eric Angelini_, Oct 24 2014