OFFSET
0,4
COMMENTS
Consider the transformation 1 + x + x^2 + x^3 + ... + x^n = A_0*(x-2)^0 + A_1*(x+2)^1 + A_2*(x-2)^2 + A_3*(x+2)^3 + ... + A_n*(x-2*(-1)^n)^n. This sequence gives A_0, ... A_n as the entries in the n-th row of this triangle, starting at n = 0.
FORMULA
T(n,n-1) = 1+2*n*(-1)^n, for n > 0.
EXAMPLE
1;
-1, 1;
-13, 5, 1;
75, -31, -5, 1;
987, -383, -77, 9, 1;
-10565, 4177, 803, -111, -9, 1;
-187397, 73489, 14483, -1871, -189, 13, 1;
2962811, -1164335, -228109, 30049, 2891, -239, -13, 1;
67151483, -26365999, -5179405, 676961, 66731, -5167, -349, 17, 1;
PROG
(PARI) a(n, j, L)=if(j==n, return(1)); if(j!=n, return(1-sum(i=1, n-j, (-L)^i*(-1)^(i*j)*binomial(i+j, i)*a(n, i+j, L))))
for(n=0, 10, for(j=0, n, print1(a(n, j, -2), ", ")))
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Derek Orr, Oct 23 2014
STATUS
approved