This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A249189 Decimal expansion of Hayman's constant in Landau's Theorem. 0
 4, 3, 7, 6, 8, 7, 9, 2, 3, 0, 4, 5, 2, 9, 5, 3, 2, 7, 7, 6, 7, 3, 5, 3, 9, 8, 8, 1, 4, 0, 8, 9, 2, 9, 0, 8, 6, 5, 1, 8, 7, 4, 5, 4, 4, 5, 6, 5, 1, 1, 3, 3, 4, 4, 4, 2, 3, 8, 5, 7, 2, 4, 2, 1, 1, 5, 8, 9, 0, 3, 8, 7, 6, 8, 9, 1, 8, 6, 5, 8, 9, 5, 5, 4, 2, 0, 6, 6, 2, 9, 9, 3, 5, 5, 1, 2, 1, 7, 2, 6, 3, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Steven Finch, Goldberg’s Zero-One Constants, May 21, 2014. [Cached copy, with permission of the author] Wan Tzei Lai, The exact value of Hayman's constant in Landau's Theorem, Sci. Sinica 22, 2 (1979), 129-134. Wikipedia, Théorème de Landau, [in French] FORMULA K = (1/(4*Pi^2))*Gamma(1/4)^4. EXAMPLE 4.37687923045295327767353988140892908651874544565... MATHEMATICA K = (1/(4*Pi^2))*Gamma[1/4]^4; RealDigits[K, 10, 102] // First PROG (PARI) (1/(4*Pi^2))*gamma(1/4)^4 \\ Michel Marcus, Oct 23 2014 CROSSREFS Cf. A068466. Sequence in context: A046560 A131413 A205392 * A168200 A112887 A305035 Adjacent sequences:  A249186 A249187 A249188 * A249190 A249191 A249192 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Oct 23 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 22 05:47 EDT 2019. Contains 325213 sequences. (Running on oeis4.)