login
A249189
Decimal expansion of Hayman's constant in Landau's Theorem.
0
4, 3, 7, 6, 8, 7, 9, 2, 3, 0, 4, 5, 2, 9, 5, 3, 2, 7, 7, 6, 7, 3, 5, 3, 9, 8, 8, 1, 4, 0, 8, 9, 2, 9, 0, 8, 6, 5, 1, 8, 7, 4, 5, 4, 4, 5, 6, 5, 1, 1, 3, 3, 4, 4, 4, 2, 3, 8, 5, 7, 2, 4, 2, 1, 1, 5, 8, 9, 0, 3, 8, 7, 6, 8, 9, 1, 8, 6, 5, 8, 9, 5, 5, 4, 2, 0, 6, 6, 2, 9, 9, 3, 5, 5, 1, 2, 1, 7, 2, 6, 3, 6
OFFSET
1,1
COMMENTS
Named after the British mathematician Walter Kurt Hayman (1926-2020). - Amiram Eldar, Apr 15 2021
REFERENCES
Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 421.
LINKS
Steven Finch, Goldberg’s Zero-One Constants, May 21, 2014. [Cached copy, with permission of the author]
W. K. Hayman, Some remarks on Schottky's theorem, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 43, No. 4 (1947), pp. 442-454.
Wan Tzei Lai, The exact value of Hayman's constant in Landau's Theorem, Scientia Sinica, Vol. 22, No. 2 (1979), pp. 129-134.
Wikipedia, Théorème de Landau, [in French].
FORMULA
K = (1/(4*Pi^2))*Gamma(1/4)^4.
EXAMPLE
4.37687923045295327767353988140892908651874544565...
MATHEMATICA
K = (1/(4*Pi^2))*Gamma[1/4]^4; RealDigits[K, 10, 102] // First
PROG
(PARI) (1/(4*Pi^2))*gamma(1/4)^4 \\ Michel Marcus, Oct 23 2014
CROSSREFS
Cf. A068466.
Sequence in context: A046560 A205392 A131413 * A168200 A112887 A351684
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved