The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A249127 a(n) = n * floor(3*n/2). 1
 0, 1, 6, 12, 24, 35, 54, 70, 96, 117, 150, 176, 216, 247, 294, 330, 384, 425, 486, 532, 600, 651, 726, 782, 864, 925, 1014, 1080, 1176, 1247, 1350, 1426, 1536, 1617, 1734, 1820, 1944, 2035, 2166, 2262, 2400, 2501, 2646, 2752, 2904, 3015, 3174, 3290, 3456, 3577, 3750, 3876, 4056, 4187, 4374, 4510 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Union of A033570, that is (2*n+1)*(3*n+1), and A033581, that is 6*n^2. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Pentagonal Number Wikipedia, Pentagonal number Wikipedia, Platonic Solid Wolfram MathWorld, Platonic Solid Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1). FORMULA a(n) = n * floor(3n/2) = n * A032766(n). a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - Colin Barker, Oct 22 2014 G.f.: -x*(2*x^3+4*x^2+5*x+1) / ((x-1)^3*(x+1)^2). - Colin Barker, Oct 22 2014 a(n) = 3/2 * n^2 + ((-1)^n-1) * n/4. E.g.f.: ((3/2)*x^2+(5/4)*x)*exp(x)-(x/4)*exp(-x). - Robert Israel, Oct 26 2014 EXAMPLE For n=5, a(n) = 5*floor(15/2) = 5*7 = 35. MAPLE seq(n*floor(3*n/2), n=0..100); # Robert Israel, Oct 26 2014 MATHEMATICA Table[n Floor[3 n/2], {n, 0, 100}] (* Vincenzo Librandi, Oct 22 2014 *) PROG (Python) from math import * {print(int(n*floor(3*n/2)), end=', ') for n in range(101)} (PARI) a(n)=3*n\2*n \\ Charles R Greathouse IV, Oct 21 2014 (MAGMA) [n*Floor(3*n/2): n in [0..60]]; // Vincenzo Librandi, Oct 22 2014 (PARI) concat(0, Vec(-x*(2*x^3+4*x^2+5*x+1)/((x-1)^3*(x+1)^2) + O(x^100))) \\ Colin Barker, Oct 22 2014 CROSSREFS Cf. A032766, A033581 (6*n^2), A033570 (2*n+1)*(3*n+1), A001318 (n*(3*n-1)/2). Sequence in context: A227416 A106697 A323002 * A277336 A140522 A065218 Adjacent sequences:  A249124 A249125 A249126 * A249128 A249129 A249130 KEYWORD nonn,easy AUTHOR Karl V. Keller, Jr., Oct 21 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 07:16 EDT 2020. Contains 337335 sequences. (Running on oeis4.)