login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A249123 Position of n^6 in the ordered union of {h^6, h >= 1} and {2*k^6, k >= 1}. 4
1, 3, 5, 7, 9, 11, 13, 15, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 35, 37, 39, 41, 43, 45, 47, 49, 51, 52, 54, 56, 58, 60, 62, 64, 66, 68, 69, 71, 73, 75, 77, 79, 81, 83, 85, 86, 88, 90, 92, 94, 96, 98, 100, 102, 103, 105, 107, 109, 111, 113, 115, 117, 119 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Let S = {h^6, h >= 1} and T = {2*k^6, k >= 1}.  Then S and T are disjoint, and their ordered union is given by A249073. The position of n^6 in is A249123(n), and the position of 2*n^6 is A249124(n).  Also, a(n) is the position of n in the joint ranking of the positive integers and the numbers k*2^(1/6), so that A249123 and A249124 are a pair of Beatty sequences.

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = n + floor(2^(-1/6)*n).  - Robert Israel, Aug 12 2019

EXAMPLE

{h^6, h >= 1} = {1, 64, 729, 4096, 15625, 46656, 117649, ...};

{2*k^6, k >= 1} = {2, 128, 1458, 8192, 31250, 93312, ...};

so the ordered union is {1, 2, 64, 128, 729, 1458, 4096, 8192, 15625, ...}, and

a(2) = 3 because 2^6 is in position 3.

MAPLE

Res:= NULL: count:= 0:

a:= 1: b:= 1:

for pos from 1 while count < 100 do

  if a^6 < 2*b^6 then

    Res:= Res, pos;

    count:= count+1;

    a:= a+1

  else

    b:= b+1

  fi

od:

Res; # Robert Israel, Aug 11 2019

MATHEMATICA

z = 200; s = Table[h^6, {h, 1, z}]; t = Table[2*k^6, {k, 1, z}]; u = Union[s, t];

v = Sort[u]  (* A249073 *)

m = Min[120, Position[v, 2*z^2]]

Flatten[Table[Flatten[Position[v, s[[n]]]], {n, 1, m}]]  (* A249123 *)

Flatten[Table[Flatten[Position[v, t[[n]]]], {n, 1, m}]]  (* A249124 *)

PROG

(PARI) a(n) = n + sqrtnint(((n^6) \ 2), 6) \\ David A. Corneth, Aug 11 2019

CROSSREFS

Cf. A249073, A249124.

Sequence in context: A160931 A160924 A063280 * A094042 A248196 A245234

Adjacent sequences:  A249120 A249121 A249122 * A249124 A249125 A249126

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Oct 21 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 23 07:28 EST 2020. Contains 332159 sequences. (Running on oeis4.)