login
A249081
Number of length n+5 0..4 arrays with every six consecutive terms having two times the sum of some two elements equal to the sum of the remaining four
1
5005, 8805, 15493, 27213, 47645, 83045, 143925, 263405, 480725, 874421, 1584425, 2858305, 5130445, 9561325, 17773565, 32945477, 60874349, 112077225, 205513125, 386804645, 726595221, 1361924833, 2546660077, 4749273385, 8830446345
OFFSET
1,1
COMMENTS
Column 4 of A249085
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) -a(n-4) +a(n-5) +61*a(n-6) -122*a(n-7) -2*a(n-8) +62*a(n-10) -60*a(n-11) -1181*a(n-12) +2361*a(n-13) +120*a(n-14) +a(n-15) -1241*a(n-16) +1120*a(n-17) +8860*a(n-18) -17660*a(n-19) -2240*a(n-20) -60*a(n-21) +9980*a(n-22) -7680*a(n-23) -25184*a(n-24) +49248*a(n-25) +15360*a(n-26) +1120*a(n-27) -32864*a(n-28) +16384*a(n-29) +24064*a(n-30) -40448*a(n-31) -32768*a(n-32) -7680*a(n-33) +40448*a(n-34) -16384*a(n-36) +16384*a(n-37) +16384*a(n-39) -16384*a(n-40)
EXAMPLE
Some solutions for n=6
..1....0....0....0....0....3....0....1....1....2....1....4....0....4....1....3
..0....1....0....2....4....3....0....1....2....3....2....3....3....2....4....3
..2....3....4....1....0....1....4....2....4....0....2....4....2....4....2....3
..1....1....0....0....0....4....1....4....4....3....0....4....3....0....1....4
..2....0....2....0....3....3....1....4....0....4....0....2....1....4....1....4
..3....1....0....3....2....1....0....3....1....0....1....4....3....1....0....1
..1....3....3....0....0....0....0....1....4....2....1....4....0....4....1....3
..0....1....3....2....4....0....3....1....2....3....2....3....0....2....1....0
..2....3....1....4....3....1....1....2....4....3....2....4....2....4....2....0
..1....1....3....3....0....1....4....4....4....0....0....4....3....0....1....4
..2....0....2....0....0....0....1....4....0....4....3....2....1....4....4....4
CROSSREFS
Sequence in context: A018188 A280879 A067226 * A154059 A138637 A140921
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 20 2014
STATUS
approved