

A249051


The smallest integer > 1 of exactly n consecutive integers divisible respectively by the first n natural numbers (A000027), or 0 if no such number exists.


1



2, 3, 7, 13, 0, 61, 421, 841, 0, 2521, 0, 27721, 0, 0, 360361, 720721, 0, 12252241, 0, 0, 0, 232792561, 0, 5354228881, 0, 26771144401, 0, 80313433201, 0, 2329089562801, 72201776446801, 0, 0, 0, 0, 144403552893601, 0, 0, 0, 5342931457063201, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

For all n > 1 and a(n) # 0, a(n) == 1 (mod p#), where p# are the primorial numbers (A034386).
When a(n) is not 0, a(n) = A075059(n).
a(n) = 0 when n is a member of A080765.


LINKS

Table of n, a(n) for n=1..41.


EXAMPLE

a(3) = 7 because the smallest k such that 1k, 2k+1, 3k+2, and 4 does not divide k+3 is 7.
a(4) = 13 because the smallest k such that 1k, 2k+1, 3k+2, 4k+3, and 5 does not divide k+4 is 13.


MATHEMATICA

f[n_] := Block[{lcm = LCM @@ Range@ n}, If[ lcm == LCM @@ Range[n + 1], 0, lcm + 1]]; Array[ f, 42] (* Robert G. Wilson v, Nov 13 2014 *)


CROSSREFS

Cf. A075059, A034386, A080765.
Sequence in context: A056294 A084423 A068134 * A225093 A278007 A081256
Adjacent sequences: A249048 A249049 A249050 * A249052 A249053 A249054


KEYWORD

nonn


AUTHOR

Robert G. Wilson v, Oct 30 2014


EXTENSIONS

a(5) corrected (0, not 181) by Jon Perry, Nov 05 2014
Sequence corrected by Robert G. Wilson v, Nov 13 2014


STATUS

approved



