login
Three-dimensional array of numbers N(r,p,m) read by triangular slices, each slice being read across rows: N(r,p,m) is the number of "r-panes in a (p,m) structure".
1

%I #27 Nov 01 2018 13:38:22

%S 1,1,1,2,1,3,4,1,6,6,1,6,7,7,24,18,1,14,36,24,1,10,11,25,70,46,15,100,

%T 180,96,1,30,150,240,120,1,15,16,65,165,101,90,455,690,326,31,360,

%U 1170,1440,600,1,62,540,1560,1800,720

%N Three-dimensional array of numbers N(r,p,m) read by triangular slices, each slice being read across rows: N(r,p,m) is the number of "r-panes in a (p,m) structure".

%C Three-dimensional arrays don't really work in the OEIS, but this one seems like it should be included. See Good-Tideman for precise definition.

%H I. J. Good, T. N. Tideman, <a href="http://dx.doi.org/10.1016/0097-3165(77)90077-2">Stirling numbers and a geometric structure from voting theory</a>, Journal of Combinatorial Theory, Series A Volume 23, Issue 1, July 1977, Pages 34-45.

%H Warren D. Smith, <a href="http://rangevoting.org/WilsonOrder.html">D-dimensional orderings and Stirling numbers</a>, October 2014.

%F There is a formula involving Stirling numbers.

%e The initial triangular slices are:

%e 1

%e -

%e 1

%e 1 2

%e ---

%e 1

%e 3 4

%e 1 6 6

%e -----

%e 1

%e 6 7

%e 7 24 18

%e 1 14 36 24

%e ----------

%e 1

%e 10 11

%e 25 70 46

%e 15 100 180 96

%e 1 30 150 240 120

%e ----------------

%e 1

%e 15 16

%e 65 165 101

%e 90 455 690 326

%e 31 360 1170 1440 600

%e 1 62 540 1560 1800 720

%t S1[m_, n_] := Abs[StirlingS1[m, m - n]];

%t S2[m_, n_] := StirlingS2[m, m - n];

%t Nr[r_, p_, m_] := S2[m, p - r] Sum[S1[m - p + r, nu], {nu, 0, r}];

%t Table[Nr[r, p, m], {m, 1, 6}, {p, 0, m - 1}, {r, 0, p}] // Flatten (* _Jean-François Alcover_, Nov 01 2018 *)

%Y The sequence of left edges of the triangles is A008278; the bases of the triangles give A019538; the hypotenuses give A181854.

%K nonn,tabf,more

%O 1,4

%A _N. J. A. Sloane_, Oct 29 2014

%E More terms from _Michel Marcus_, Aug 28 2015