|
|
A249021
|
|
Value x in the solution of x^2-D*y^2=-1 as D runs through A003654.
|
|
2
|
|
|
7, 38, 117, 18, 268, 515, 70, 882, 32, 182, 99, 29718, 2072, 1068, 43, 2943, 378, 500, 5604, 4030, 4005, 8890182, 776, 5357, 57, 1744, 6948, 113582, 4832118, 8827, 1118, 1111225770, 68, 1764132, 11018, 3141, 251, 13545, 1710, 23156, 71011068, 16432, 6072, 82, 1407, 8920484118, 1063532, 19703
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The pair (x,y) is taken from the numerator of the earliest (lowest order) convergent to the continued fraction of sqrt(D) that satisfies the "non-Pell" equation.
|
|
LINKS
|
Table of n, a(n) for n=1..48.
|
|
MAPLE
|
A249021 := proc(n)
local dis, cf, o, q, x, y ;
dis := A003654(n) ;
cf := numtheory[cfrac](sqrt(dis), 'periodic', 'quotients') ;
for o from 1 do
q := numtheory[nthconver](cf, o) ;
x := numer(q) ;
y := denom(q) ;
if x^2-dis*y^2 = -1 then
return x ;
end if;
end do:
end proc:
seq(A249021(n), n=1..50) ;
|
|
CROSSREFS
|
Cf. A130226.
Sequence in context: A165495 A034858 A249354 * A114290 A277912 A000531
Adjacent sequences: A249018 A249019 A249020 * A249022 A249023 A249024
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. J. Mathar, Oct 19 2014
|
|
STATUS
|
approved
|
|
|
|