This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A248982 Sequence of distinct least positive numbers such that the average of the first n terms is a Fibonacci number. 1
 1, 3, 2, 6, 13, 5, 26, 8, 53, 93, 21, 177, 34, 328, 55, 599, 89, 1079, 144, 1924, 233, 3401, 377, 5969, 610, 10412, 987, 18067, 1597, 31207, 2584, 53688, 4181, 92037, 6765, 157281, 10946, 268016, 17711, 455551, 28657, 772519, 46368, 1307276, 75025, 2207953, 121393, 3722593, 196418, 6266068, 317811 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS FORMULA Conjecture: a(n) = 2*a(n-2)+a(n-4)-2*a(n-6)-a(n-8) for n > 17. - Colin Barker, Oct 19 2014 Empirical g.f.: x*(x -1)*(40*x^15 +98*x^13 +4*x^11 +3*x^10 -80*x^9 +7*x^8 -2*x^6 -2*x^5 -12*x^4 -4*x^3 -4*x^2 -4*x -1) / (x^4 +x^2 -1)^2. - Colin Barker, Oct 19 2014 Conjecture: For n > 4, a(2*n+1) = A000045(n+3). EXAMPLE 1/1 = 1 is a Fibonacci number. So a(1) = 1. (1+2)/2 is not a Fibonacci number. (1+3)/2 = 2 is a Fibonacci number. So a(2) = 3. (1+3+2)/3 = 2 is a Fibonacci number. So a(3) = 2. PROG (PARI) v=[]; n=1; while(n<10^7, num=(vecsum(v)+n); if(num%(#v+1)==0&&vecsearch(vecsort(v), n)==0, for(i=1, n+2, if(fibonacci(i)>(num/(#v+1)), break); if(fibonacci(i)==(num/(#v+1)), print1(n, ", "); v=concat(v, n); n=1; break))); n++) CROSSREFS Sequence in context: A091461 A078091 A073883 * A289069 A074718 A285457 Adjacent sequences:  A248979 A248980 A248981 * A248983 A248984 A248985 KEYWORD nonn AUTHOR Derek Orr, Oct 18 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.