OFFSET
0,2
COMMENTS
Consider the transformation 1 + x + x^2 + x^3 + ... + x^n = A_0*(x-0)^0 + A_1*(x-3)^1 + A_2*(x-6)^2 + ... + A_n*(x-3n)^n. This sequence gives A_0, ... A_n as the entries in the n-th row of this triangle, starting at n = 0.
FORMULA
T(n,n-1) = 1 + 3n^2 for n > 0.
T(n,1) = (3^n*(n^2-n+1)-1)/2 for n > 0.
EXAMPLE
1;
4, 1;
4, 13, 1;
4, 94, 28, 1;
4, 526, 460, 49, 1;
4, 2551, 5860, 1399, 76, 1;
4, 11299, 64180, 30559, 3316, 109, 1;
4, 47020, 635716, 566374, 109156, 6724, 148, 1;
4, 186988, 5861188, 9384358, 3012196, 309124, 12244, 193, 1;
4, 718429, 51210820, 143307490, 73556068, 11790874, 747076, 20605, 244, 1;
PROG
(PARI) for(n=0, 10, for(k=0, n, if(!k, if(n, print1(4, ", ")); if(!n, print1(1, ", "))); if(k, print1(sum(i=1, n, ((3*k)^(i-k)*i*binomial(i, k)))/k, ", "))))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Derek Orr, Oct 18 2014
STATUS
approved