OFFSET
0,2
COMMENTS
Consider the transformation 1 + x + x^2 + x^3 + ... + x^n = A_0*(x+0)^0 + A_1*(x+3)^1 + A_2*(x+6)^2 + ... + A_n*(x+3n)^n. This sequence gives A_0, ... A_n as the entries in the n-th row of this triangle, starting at n = 0.
FORMULA
T(n,n-1) = 1 - 3n^2 for n > 0.
EXAMPLE
1;
-2, 1;
-2, -11, 1;
-2, 70, -26, 1;
-2, -362, 406, -47, 1;
-2, 1663, -4994, 1303, -74, 1;
-2, -7085, 53326, -27857, 3166, -107, 1;
-2, 28636, -518210, 507958, -102674, 6508, -146, 1;
-2, -111332, 4707262, -8310026, 2800366, -295892, 11950, -191, 1;
PROG
(PARI) for(n=0, 10, for(k=0, n, if(!k, if(n, print1(-2, ", ")); if(!n, print1(1, ", "))); if(k, print1(sum(i=1, n, ((-3*k)^(i-k)*i*binomial(i, k)))/k, ", "))))
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Derek Orr, Oct 18 2014
STATUS
approved