%I #8 May 16 2019 01:32:32
%S 0,1,1,2,3,2,-2,-2,3,5,5,4,7,8,6,8,5,-4,-20,-28,-45,-52,-70,-76,-69,
%T -48,-42,-52,-79,-124,-150,-196,-221,-268,-292,-292,5,9,11,10,13,11,3,
%U -12,-19,-35,-41,-58,-63,-55,-33,-26,-35,-61,-105,-130,-175,-199,-245,-268,-267,-241,-241
%N Table read by rows: row n contains the partial sums of the wrecker ball sequences starting with n, cf. A248939.
%C A228474(n) + 1 = length of row n;
%C row n = partial sums of row n in A248939;
%C T(n,A228474(n)) = A248961(n).
%H Reinhard Zumkeller, <a href="/A248973/b248973.txt">Rows n = 0..16 of triangle, flattened</a>
%H Gordon Hamilton, <a href="http://www.youtube.com/watch?v=mQdNaofLqVc">Wrecker Ball Sequences</a>, Video, 2013
%F T(n,0) = n; T(n,k) = T(n,k-1) + A248939(n,k) for k=1..A228474(n).
%o (Haskell)
%o a248973 n k = a248973_tabf !! n !! k
%o a248973_row n = a248973_tabf !! n
%o a248973_tabf = map (scanl1 (+)) a248939_tabf
%Y Cf. A228474 (row lengths - 1), A248961 (right edge).
%K sign,tabf
%O 0,4
%A _Reinhard Zumkeller_, Oct 20 2014