login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A248964 Denominators from expansion of e.g.f. (x^3/3!)/(e^x-1-x-(x^2/2!)). 1
1, 4, 40, 160, 5600, 896, 19200, 76800, 14784000, 19712000, 512512000, 186368000, 19568640000, 6021120000, 20889600000, 7798784000, 71310131200000, 16778854400000, 503365632000000, 15138816000000, 221798793216000000, 6035341312000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..21.

Daniel Berhanu, Hunduma Legesse, Arithmetical properties of hypergeometric bernoulli numbers, Indagationes Mathematicae, 2016.

FORMULA

E.g.f: (x^3/3!)/(e^x - 1 - x - (x^2/2!)).

EXAMPLE

E.g.f. coefficients are 1, -1/4, 1/40, 1/160, 1/5600, -1/896, -13/19200, 7/76800, ...

MATHEMATICA

Denominator[(#! SeriesCoefficient[(x^3/6)/( E^x - 1 - x - x^2/2), {x, 0, #}] & /@ Range[0, 25])]

PROG

(PARI) x = y + O(y^30); v = Vec(serlaplace((x^3/3!)/(exp(x)-1-x-(x^2/2!)))); for (i=1, #v, print1(denominator(v[i]), ", ")); \\ Michel Marcus, Oct 18 2014

(Sage)

def A248964_list(len):

    f, R, C = 1, [1], [1]+[0]*(len-1)

    for n in (1..len-1):

        f *= n

        for k in range(n, 0, -1):

            C[k] = C[k-1] / (k+3)

        C[0] = -sum(C[k] for k in (1..n))

        R.append((C[0]*f).denominator())

    return R

print A248964_list(22) # Peter Luschny, Feb 20 2016

CROSSREFS

Cf. A249024 (numerators).

Sequence in context: A063997 A187378 A199833 * A224086 A271013 A163322

Adjacent sequences:  A248961 A248962 A248963 * A248965 A248966 A248967

KEYWORD

nonn,frac

AUTHOR

Christopher Ernst, Oct 18 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 01:57 EDT 2019. Contains 328105 sequences. (Running on oeis4.)