%I #20 Sep 08 2022 08:46:10
%S 4,4,6,0,8,7,5,5,7,1,8,3,7,5,8,4,2,9,5,7,1,1,5,1,7,0,6,4,0,2,1,0,1,8,
%T 0,9,8,8,6,2,0,8,6,3,2,4,1,2,8,5,9,9,0,1,1,1,1,9,9,1,2,1,9,9,6,3,4,0,
%U 4,6,8,5,7,9,2,8,2,0,4,7,3,3,6,9,1,1,2,5,4,5,2,6,9,0,0,3,9,8,9,0,2,6,1,5,3
%N Decimal expansion of 2^2281 - 1, the 17th Mersenne prime A000668(17).
%C The 13th through the 17th Mersenne primes were found in 1952 by Raphael M. Robinson, using SWAC.
%C The digits of this prime were published on page 167 of Nordisk Mathematisk Tidskrift 2 (1954).
%H Arkadiusz Wesolowski, <a href="/A248933/b248933.txt">Table of n, a(n) for n = 687..1373</a>
%H D. H. Lehmer, <a href="http://www.ams.org/journals/mcom/1953-07-041/S0025-5718-53-99371-5/S0025-5718-53-99371-5.pdf">Two New Mersenne Primes</a>, Mathematics of Computation, vol. 7, No. 41 (1952), p. 72.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Mersenne_prime">Mersenne prime</a>
%F Equals 2^A000043(17) - 1.
%e 44608755718375842957115170640210180988620863241285990111199121996340468...
%t RealDigits[2^2281 - 1, 10, 100][[1]] (* _G. C. Greubel_, Oct 03 2017 *)
%o (Magma) Reverse(Intseq(2^2281-1));
%o (PARI) eval(Vec(Str(2^2281-1)))
%Y Cf. A169684 = A000668(11), A169681 = A000668(12), A169685 = A000668(13), A204063 = A000668(14), A248931 = A000668(15), A248932 = A000668(16), A248934 = A000668(18), A248935 = A000668(19), A248936 = A000668(20).
%K nonn,cons,easy,fini,full
%O 687,1
%A _Arkadiusz Wesolowski_, Oct 17 2014