This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A248933 Decimal expansion of 2^2281 - 1, the 17th Mersenne prime A000668(17). 17
 4, 4, 6, 0, 8, 7, 5, 5, 7, 1, 8, 3, 7, 5, 8, 4, 2, 9, 5, 7, 1, 1, 5, 1, 7, 0, 6, 4, 0, 2, 1, 0, 1, 8, 0, 9, 8, 8, 6, 2, 0, 8, 6, 3, 2, 4, 1, 2, 8, 5, 9, 9, 0, 1, 1, 1, 1, 9, 9, 1, 2, 1, 9, 9, 6, 3, 4, 0, 4, 6, 8, 5, 7, 9, 2, 8, 2, 0, 4, 7, 3, 3, 6, 9, 1, 1, 2, 5, 4, 5, 2, 6, 9, 0, 0, 3, 9, 8, 9, 0, 2, 6, 1, 5, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 687,1 COMMENTS The 13th through the 17th Mersenne primes were found in 1952 by Raphael M. Robinson, using SWAC. The digits of this prime were published on page 167 of Nordisk Mathematisk Tidskrift 2 (1954). LINKS Arkadiusz Wesolowski, Table of n, a(n) for n = 687..1373 D. H. Lehmer, Two New Mersenne Primes, Mathematics of Computation, vol. 7, No. 41 (1952), p. 72. Wikipedia, Mersenne prime FORMULA Equals 2^A000043(17) - 1. EXAMPLE 44608755718375842957115170640210180988620863241285990111199121996340468... MATHEMATICA RealDigits[2^2281 - 1, 10, 100][[1]] (* G. C. Greubel, Oct 03 2017 *) PROG (MAGMA) Reverse(Intseq(2^2281-1)); (PARI) eval(Vec(Str(2^2281-1))) CROSSREFS Cf. A169684 = A000668(11), A169681 = A000668(12), A169685 = A000668(13), A204063 = A000668(14), A248931 = A000668(15), A248932 = A000668(16), A248934 = A000668(18), A248935 = A000668(19), A248936 = A000668(20). Sequence in context: A098821 A142154 A084458 * A110356 A200348 A205868 Adjacent sequences:  A248930 A248931 A248932 * A248934 A248935 A248936 KEYWORD nonn,cons,easy,fini,full AUTHOR Arkadiusz Wesolowski, Oct 17 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 25 03:10 EDT 2019. Contains 326318 sequences. (Running on oeis4.)