login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A248923 a(n) is the smallest k >= n such that prime(n)*prime(k) - prime(n+k) is a perfect square. 1
1, 3, 5, 57, 99, 10, 30, 17, 28, 91, 398, 2638, 292, 1383, 69, 1055, 860, 679, 10782, 5440, 1630, 997, 640, 34, 186, 1248, 102, 2039, 1457, 95, 7621, 3980, 273, 4005, 1071, 889, 56, 6309, 4295, 211, 6423, 1004, 2689, 427, 542, 463, 2430, 4815, 223, 277, 70 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Conjecture: a(n) exists for all n.

The corresponding squares are 1, 4, 36, 1600, 5184, 324, 1764, 1024, 2304, 12996, 81796, 853776, 76176, 481636, 15876, 438244, 386884, 304704, 7518564, 3732624, 992016, 614656, 389376, ...

LINKS

Michel Lagneau, Table of n, a(n) for n = 1..500

EXAMPLE

a(3)=5 because prime(3)*prime(5) - prime(3+5) = 5*11 - 19 = 6^2.

a(4)=57 because prime(4)*prime(57) - prime(4+57) = 7*269 - 283 = 40^2.

MAPLE

with(numtheory):nn:=70:

for n from 1 to nn do:

  pn:=ithprime(n):ii:=0:

    for k from n to 10^9 while(ii=0)do:

      pk:=ithprime(k):pnk:=ithprime(n+k):c:=pn*pk-pnk:c2:=sqrt(c):

       if c2=floor(c2)

       then

       printf(`%d, `, k):

       ii:=1:

       else

       fi:

     od:

od:

MATHEMATICA

Do[k=n; While[!IntegerQ[Sqrt[Prime[k]*Prime[n]-Prime[n+k]]], k++]; Print [n, " ", k], {n, 1, 60}]

PROG

(PARI) a(n) = {k = n; while(! issquare(prime(n)*prime(k) - prime(n+k)), k++); k; } \\ Michel Marcus, Nov 13 2014

CROSSREFS

Cf. A000040, A000290.

Sequence in context: A020462 A087602 A086340 * A155121 A106914 A049190

Adjacent sequences:  A248920 A248921 A248922 * A248924 A248925 A248926

KEYWORD

nonn

AUTHOR

Michel Lagneau, Oct 16 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 18:24 EST 2019. Contains 329241 sequences. (Running on oeis4.)