This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A248916 Decimal expansion of gamma = 8*lambda^2, a critical threshold of a boundary value problem, where lambda is Laplace's limit constant A033259. 2
 3, 5, 1, 3, 8, 3, 0, 7, 1, 9, 1, 2, 5, 1, 6, 1, 2, 0, 6, 2, 0, 7, 8, 3, 7, 0, 9, 3, 2, 3, 8, 8, 2, 3, 5, 8, 7, 1, 0, 9, 1, 3, 4, 2, 1, 1, 9, 5, 1, 2, 8, 4, 3, 6, 8, 1, 8, 2, 5, 4, 1, 8, 5, 2, 5, 3, 4, 9, 2, 1, 8, 6, 0, 8, 7, 7, 3, 5, 3, 0, 6, 2, 2, 4, 5, 1, 3, 9, 8, 4, 8, 8, 7, 6, 5, 9, 9, 9, 7, 5, 7, 3, 9, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The boundary value problem y''(x) + c*exp(y(x)) = 0, y(0) = y(1) = 0 and c > 0, has 0, 1 or 2 solutions when c > gamma, c = gamma and c < gamma, respectively. [After Steven Finch] REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.8 Laplace limit constant, p. 266. LINKS Steven R. Finch, Errata and Addenda to Mathematical Constants, p. 32. Eric Weisstein's MathWorld, Laplace Limit EXAMPLE 3.5138307191251612062078370932388235871... MATHEMATICA digits = 104; lambda = x /. FindRoot[x Exp[Sqrt[1 + x^2]]/(1 + Sqrt[1 + x^2]) == 1, {x, 1}, WorkingPrecision -> digits + 5]; gamma = 8*lambda^2; RealDigits[gamma, 10, digits] // First CROSSREFS Cf. A033259, A085984. Sequence in context: A243854 A084243 A275056 * A030311 A198881 A318488 Adjacent sequences:  A248913 A248914 A248915 * A248917 A248918 A248919 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Oct 16 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 23 12:03 EST 2019. Contains 320431 sequences. (Running on oeis4.)