

A248907


Numbers consisting only of digits 2 and 3, ordered according to the value obtained when the digits are interspersed with (rightassociative) ^ operators.


6



2, 3, 22, 23, 32, 222, 33, 322, 223, 232, 323, 332, 2222, 3222, 233, 333, 2322, 3322, 2223, 3223, 2232, 3232, 2323, 3323, 2332, 3332, 22222, 32222, 23222, 33222, 2233, 3233, 2333, 3333, 22322, 32322, 23322, 33322, 22223, 32223, 23223, 33223, 22232, 32232
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A256179(n) is found by treating the digits of a(n) as power towers. So for example, a(11) = 323, so A256179(11) = 6561 because 3^(2^3) = 6561.  Bob Selcoe, Mar 18 2015
This is a permutation of the list A032810 (numbers having only digits 2 and 3) in the sense that is a list with exactly the same terms but in different order, namely such that the ("power tower") function A256229 yields an increasing sequence. The permutation of the indices is given by A185969, cf. formula.  M. F. Hasler, Mar 21 2015


LINKS

Table of n, a(n) for n=1..44.
Vladimir Reshetnikov, 23 sequence puzzle, SeqFan list, Mar 18 2015.
Vladimir Reshetnikov et al., Power towers of 2 and 3  looking for a proof, on StackExchange.com, Mar 19 2015


FORMULA

a(n) = A032810(A185969(n)).


MATHEMATICA

ClearAll[a, p];
p[d_, n_] := d 10^IntegerLength[n] + n;
a[n_ /; n <= 12] := a[n] = {2, 3, 22, 23, 32, 222, 33, 322, 223, 232, 323, 332}[[n]];
a[n_ /; OddQ[n]] := a[n] = p[2, a[(n  1)/2]];
a[n_] := a[n] = p[3, a[(n  2)/2]];
Array[a, 100]


PROG

(Haskell)
a248907 = a032810 . a185969
(PARI) vecsort(A032810, (a, b)>A256229(a)>A256229(b)) \\ Assuming that A032810 is defined as a vector. Append [1..N] if the vector A032810 has too many (thus too large) elements: recall that 33333 => 3^(3^(3^(3^3))).  M. F. Hasler, Mar 21 2015


CROSSREFS

Cf. A032810, A185969, A256179.
Sequence in context: A163902 A154865 A032810 * A062921 A298470 A083178
Adjacent sequences: A248904 A248905 A248906 * A248908 A248909 A248910


KEYWORD

nonn,easy


AUTHOR

Vladimir Reshetnikov and Reinhard Zumkeller, Mar 18 2015


EXTENSIONS

Edited by M. F. Hasler, Mar 21 2015


STATUS

approved



